Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus.

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
IET nanobiotechnology Pub Date : 2021-08-01 Epub Date: 2021-03-30 DOI:10.1049/nbt2.12043
Gabriel M Hilario, Fernando B Sulczewski, Raquel Liszbinski, Larissa D Mello, Gustavo Hagen, Tiago Fazolo, Jayme Neto, Eliane Dallegrave, Pedro Romão, Tanira Aguirre, Luiz C Rodrigues Junior
{"title":"Development and immunobiological evaluation of nanoparticles containing an immunodominant epitope of herpes simplex virus.","authors":"Gabriel M Hilario,&nbsp;Fernando B Sulczewski,&nbsp;Raquel Liszbinski,&nbsp;Larissa D Mello,&nbsp;Gustavo Hagen,&nbsp;Tiago Fazolo,&nbsp;Jayme Neto,&nbsp;Eliane Dallegrave,&nbsp;Pedro Romão,&nbsp;Tanira Aguirre,&nbsp;Luiz C Rodrigues Junior","doi":"10.1049/nbt2.12043","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1β, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"15 6","pages":"532-544"},"PeriodicalIF":3.8000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/nbt2.12043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1β, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.

Abstract Image

Abstract Image

Abstract Image

含有单纯疱疹病毒免疫显性表位的纳米颗粒的开发和免疫生物学评价。
单纯疱疹病毒(HSV)1和2是感染全世界个人的病毒,目前尚无治愈方法或疫苗。对疱疹的保护性反应主要由CD8 T淋巴细胞介导,该淋巴细胞对免疫显性SSIEFARL表位作出反应。然而,在使用免费SSIEFARL进行疫苗或免疫治疗方面存在一些障碍。本研究的目的是评估SSIEFARL纳米封装的可行性及其免疫刺激特性。在甲基丙烯酸甲酯中通过界面聚合制备了纳米/SSIEFARL,并对其理化性质、形态和免疫生物学参数进行了评价。为了评估Nano/SSIEFARL的离体能力,我们使用HSV-1感染小鼠的脾细胞来提高SSIEFARL-特异性CD8 T淋巴细胞的频率。结果表明,Nano/SSIEFARL具有球形,平均直径为352±22nm,PDI为0.361±0.009,带负电荷(-26.30±35)。在4°C下的稳定性为28天。此外,Nano/SSIEFARL在体外低浓度下对细胞无毒,并且被JAWS II树突状细胞吸收。在用Nano/SSIEFARL治疗的动物的肾脏、肝脏和淋巴结中未观察到组织病理学变化。Nan/SSIEFARL增加树突状细胞产生IL-1β、TNF-α和IL-12。最后,Nano/SSIEFARL以与游离SSIEFARL相同的速率扩大了SSIEFARL-特异性CD8+T淋巴细胞的频率。总之,所有数据共同表明,SSIEFARL适用于纳米封装,并且所生产的系统具有一些免疫佐剂特性,可用于改善对疱疹的免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信