{"title":"Hepatitis E Virus Capsid as a Carrier of Exogenous Antigens for the Development of Chimeric Virus-Like Particles.","authors":"Tianyu Lu, Nouredine Behloul, Yi Zhou, Sarra Baha, Zhenzhen Liu, Wenjuan Wei, Rui-Hua Shi, Jihong Meng","doi":"10.1159/000515719","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Virus-like particles (VLPs), self-assembled multiprotein structures, can stimulate robust immune responses due to their structural similarity to native virions that allow the presentation of multiple copies of the target epitopes. Utilizing VLPs as vaccine platforms to present exogenous antigens is a promising and challenging approach in the vaccine development field. This study investigates the potential of the truncated hepatitis E virus (HEV) capsid as a VLP platform to present foreign antigens.</p><p><strong>Methods: </strong>The S and M domains of the HEV capsid protein were selected as the optimal carrier (CaSM). The exogenous antigen Seq8 containing 3 neutralizing epitopes from 3 different foot-and-mouth disease virus (FMDV) strains was linked to the C-terminal of CaSM to construct a chimeric VLP (CaSM-Seq8). The chimeric particles were produced in Escherichia coli, and their morphology, physicochemical properties, antigenicity, and immunogenicity were analyzed.</p><p><strong>Results: </strong>Morphological analysis showed that CaSM-Seq8 self-assembled into VLPs similar to CaSM VLPs (∼26 nm in diameter) but smaller than native HEV virions. Further, the thermal stability and the resistance to enzymatic proteolysis of Seq8 were enhanced when it was attached to the CaSM carrier. The antigenicity analysis revealed a more robust reactivity against anti-FMDV antibodies when Seq8 was presented on CaSM particles. Upon injection into mice, FMDV-specific IgGs induced by CaSM-Seq8 appeared earlier, increased faster, and maintained higher levels for a longer time than those induced by Seq8 alone or the inactivated FMDV vaccine.</p><p><strong>Conclusion: </strong>This study demonstrated the potential of utilizing the truncated HEV capsid as an antigen-presenting platform for the development of chimeric VLP immunogens.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000515719","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Virus-like particles (VLPs), self-assembled multiprotein structures, can stimulate robust immune responses due to their structural similarity to native virions that allow the presentation of multiple copies of the target epitopes. Utilizing VLPs as vaccine platforms to present exogenous antigens is a promising and challenging approach in the vaccine development field. This study investigates the potential of the truncated hepatitis E virus (HEV) capsid as a VLP platform to present foreign antigens.
Methods: The S and M domains of the HEV capsid protein were selected as the optimal carrier (CaSM). The exogenous antigen Seq8 containing 3 neutralizing epitopes from 3 different foot-and-mouth disease virus (FMDV) strains was linked to the C-terminal of CaSM to construct a chimeric VLP (CaSM-Seq8). The chimeric particles were produced in Escherichia coli, and their morphology, physicochemical properties, antigenicity, and immunogenicity were analyzed.
Results: Morphological analysis showed that CaSM-Seq8 self-assembled into VLPs similar to CaSM VLPs (∼26 nm in diameter) but smaller than native HEV virions. Further, the thermal stability and the resistance to enzymatic proteolysis of Seq8 were enhanced when it was attached to the CaSM carrier. The antigenicity analysis revealed a more robust reactivity against anti-FMDV antibodies when Seq8 was presented on CaSM particles. Upon injection into mice, FMDV-specific IgGs induced by CaSM-Seq8 appeared earlier, increased faster, and maintained higher levels for a longer time than those induced by Seq8 alone or the inactivated FMDV vaccine.
Conclusion: This study demonstrated the potential of utilizing the truncated HEV capsid as an antigen-presenting platform for the development of chimeric VLP immunogens.