{"title":"Imagine Your Crossed Hands as Uncrossed: Visual Imagery Impacts the Crossed-Hands Deficit.","authors":"Lisa Lorentz, Kaian Unwalla, David I Shore","doi":"10.1163/22134808-bja10065","DOIUrl":null,"url":null,"abstract":"<p><p>Successful interaction with our environment requires accurate tactile localization. Although we seem to localize tactile stimuli effortlessly, the processes underlying this ability are complex. This is evidenced by the crossed-hands deficit, in which tactile localization performance suffers when the hands are crossed. The deficit results from the conflict between an internal reference frame, based in somatotopic coordinates, and an external reference frame, based in external spatial coordinates. Previous evidence in favour of the integration model employed manipulations to the external reference frame (e.g., blindfolding participants), which reduced the deficit by reducing conflict between the two reference frames. The present study extends this finding by asking blindfolded participants to visually imagine their crossed arms as uncrossed. This imagery manipulation further decreased the magnitude of the crossed-hands deficit by bringing information in the two reference frames into alignment. This imagery manipulation differentially affected males and females, which was consistent with the previously observed sex difference in this effect: females tend to show a larger crossed-hands deficit than males and females were more impacted by the imagery manipulation. Results are discussed in terms of the integration model of the crossed-hands deficit.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":" ","pages":"1-29"},"PeriodicalIF":1.8000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10065","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Successful interaction with our environment requires accurate tactile localization. Although we seem to localize tactile stimuli effortlessly, the processes underlying this ability are complex. This is evidenced by the crossed-hands deficit, in which tactile localization performance suffers when the hands are crossed. The deficit results from the conflict between an internal reference frame, based in somatotopic coordinates, and an external reference frame, based in external spatial coordinates. Previous evidence in favour of the integration model employed manipulations to the external reference frame (e.g., blindfolding participants), which reduced the deficit by reducing conflict between the two reference frames. The present study extends this finding by asking blindfolded participants to visually imagine their crossed arms as uncrossed. This imagery manipulation further decreased the magnitude of the crossed-hands deficit by bringing information in the two reference frames into alignment. This imagery manipulation differentially affected males and females, which was consistent with the previously observed sex difference in this effect: females tend to show a larger crossed-hands deficit than males and females were more impacted by the imagery manipulation. Results are discussed in terms of the integration model of the crossed-hands deficit.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.