{"title":"MicroRNA-378 regulates adipogenic differentiation in bovine intramuscular preadipocytes by targeting <i>CaMKK2</i>.","authors":"Dongwei Li, Heng Wang, Yongmin Li, Changqing Qu, Yunhai Zhang, Hongyu Liu, Xiaorong Zhang","doi":"10.1080/21623945.2021.1982526","DOIUrl":null,"url":null,"abstract":"<p><p>Intramuscular fat, as one of the most important palatability attribute of beef carcase, is the primary determinant of beef quality. The research of adipogenesis mechanism would provide new insight into intramuscular fatty deposition. Here, the role of microRNA-378 was investigated during bovine adipogenic differentiation. It was revealed that miR-378 expression exists variably in bovine major tissue and organs by RT-qPCR. It was predicted that miR-378 targets CaMKK2, as an AMPKα kinase, by DIANA Tools. For better research, primary preadipocytes with stable transfection for up-/down-regulated expression of miR-378 were constructed by lentiviral vectors with GFP gene. The analyses of qPCR showed that <i>PPARγ</i> and <i>adiponectin</i> mRNA levels increased, but <i>C/EBPβ, pref-1</i> and <i>CaMKK2</i> mRNA levels decreased during adipogenic differentiation. When miR-378 was overexpressed, preadipocytes proliferation became slower, there are more cellular lipid droplets, and <i>PPARγ</i> and <i>C/EBPβ</i> mRNA levels were higher, but <i>pref-1, adiponectin</i> and <i>CaMKK2</i> were lower than control groups. Luciferase assay and western blot analysis validated that miR-378 binds the nucleotide sites of the 3'- untranslated region of <i>CaMKK2</i>, which inhibits the mRNA and protein expression of <i>CaMKK2</i>. These findings suggest that miR-378 promotes adipogenic differentiation in bovine intramuscular preadipocytes by targeting <i>CaMKK2</i> via AMPK signalling pathway.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"483-492"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547835/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1982526","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 4
Abstract
Intramuscular fat, as one of the most important palatability attribute of beef carcase, is the primary determinant of beef quality. The research of adipogenesis mechanism would provide new insight into intramuscular fatty deposition. Here, the role of microRNA-378 was investigated during bovine adipogenic differentiation. It was revealed that miR-378 expression exists variably in bovine major tissue and organs by RT-qPCR. It was predicted that miR-378 targets CaMKK2, as an AMPKα kinase, by DIANA Tools. For better research, primary preadipocytes with stable transfection for up-/down-regulated expression of miR-378 were constructed by lentiviral vectors with GFP gene. The analyses of qPCR showed that PPARγ and adiponectin mRNA levels increased, but C/EBPβ, pref-1 and CaMKK2 mRNA levels decreased during adipogenic differentiation. When miR-378 was overexpressed, preadipocytes proliferation became slower, there are more cellular lipid droplets, and PPARγ and C/EBPβ mRNA levels were higher, but pref-1, adiponectin and CaMKK2 were lower than control groups. Luciferase assay and western blot analysis validated that miR-378 binds the nucleotide sites of the 3'- untranslated region of CaMKK2, which inhibits the mRNA and protein expression of CaMKK2. These findings suggest that miR-378 promotes adipogenic differentiation in bovine intramuscular preadipocytes by targeting CaMKK2 via AMPK signalling pathway.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.