A Context-Enhanced De-identification System.

ACM transactions on computing for healthcare Pub Date : 2022-01-01 Epub Date: 2021-10-15 DOI:10.1145/3470980
Kahyun Lee, Mehmet Kayaalp, Sam Henry, Özlem Uzuner
{"title":"A Context-Enhanced De-identification System.","authors":"Kahyun Lee,&nbsp;Mehmet Kayaalp,&nbsp;Sam Henry,&nbsp;Özlem Uzuner","doi":"10.1145/3470980","DOIUrl":null,"url":null,"abstract":"<p><p>Many modern entity recognition systems, including the current state-of-the-art de-identification systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a conditional random field (CRF) sequence optimizer. These systems process the input sentence by sentence. This approach prevents the systems from capturing dependencies over sentence boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence boundary detection can be problematic especially in clinical reports, where dependencies and co-references across sentence boundaries are abundant, these systems have clear limitations. In this study, we built a new system on the framework of one of the current state-of-the-art de-identification systems, NeuroNER, to overcome these limitations. This new system incorporates context embeddings through forward and backward <i>n</i> -grams without using sentence boundaries. Our context-enhanced de-identification (CEDI) system captures dependencies over sentence boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this system with deep affix features and an attention mechanism to capture the pertinent parts of the input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de-identification dataset (<i>p</i> < 0.01). All datasets comprise narrative clinical reports in English but contain different note types varying from discharge summaries to psychiatric notes. Enhancing CEDI with deep affix features and the attention mechanism further increased performance.</p>","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525195/pdf/nihms-1725224.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many modern entity recognition systems, including the current state-of-the-art de-identification systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a conditional random field (CRF) sequence optimizer. These systems process the input sentence by sentence. This approach prevents the systems from capturing dependencies over sentence boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence boundary detection can be problematic especially in clinical reports, where dependencies and co-references across sentence boundaries are abundant, these systems have clear limitations. In this study, we built a new system on the framework of one of the current state-of-the-art de-identification systems, NeuroNER, to overcome these limitations. This new system incorporates context embeddings through forward and backward n -grams without using sentence boundaries. Our context-enhanced de-identification (CEDI) system captures dependencies over sentence boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this system with deep affix features and an attention mechanism to capture the pertinent parts of the input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de-identification dataset (p < 0.01). All datasets comprise narrative clinical reports in English but contain different note types varying from discharge summaries to psychiatric notes. Enhancing CEDI with deep affix features and the attention mechanism further increased performance.

Abstract Image

Abstract Image

上下文增强的去识别系统。
许多现代实体识别系统,包括当前最先进的去识别系统,都是基于双向长短期记忆(biLSTM)单元,并通过条件随机场(CRF)序列优化器增强。这些系统逐句处理输入的信息。这种方法可以防止系统捕获句子边界上的依赖关系,并使准确的句子边界检测成为先决条件。由于句子边界检测可能存在问题,特别是在临床报告中,其中跨句子边界的依赖关系和共同引用非常丰富,因此这些系统具有明显的局限性。在这项研究中,我们在当前最先进的去识别系统之一NeuroNER的框架上建立了一个新系统,以克服这些限制。这个新系统在不使用句子边界的情况下,通过前向和后向n -grams集成了上下文嵌入。我们的上下文增强去识别(CEDI)系统捕获句子边界上的依赖关系,并完全绕过句子边界检测问题。我们用深度词缀特征和注意机制来增强这个系统,以捕获输入的相关部分。CEDI系统在2006年i2b2去识别挑战数据集、2014年i2b2共享任务去识别数据集和2016年CEGS N-GRID去识别数据集上的表现优于NeuroNER (p < 0.01)。所有的数据集都包括英文的叙述性临床报告,但包含不同的笔记类型,从出院摘要到精神病学笔记。利用深度词缀特征和注意机制对CEDI进行增强,进一步提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信