Ernestine Treimer , Kathrin Niedermayer , Sven Schumann , Martin Zenker , Michael J. Schmeisser , Susanne J. Kühl
{"title":"Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis","authors":"Ernestine Treimer , Kathrin Niedermayer , Sven Schumann , Martin Zenker , Michael J. Schmeisser , Susanne J. Kühl","doi":"10.1016/j.gep.2021.119215","DOIUrl":null,"url":null,"abstract":"<div><p>Galloway-Mowat syndrome (GAMOS) is a rare developmental disease. Patients suffer from congenital brain anomalies combined with renal abnormalities often resulting in an early-onset steroid-resistant nephrotic syndrome.</p><p><span>The etiology of GAMOS has a heterogeneous genetic contribution. Mutations in more than 10 different genes have been reported in GAMOS patients. Among these are mutations in four genes encoding members of the human KEOPS (</span><u>k</u>inase, <u>e</u>ndopeptidase and <u>o</u>ther <u>p</u>roteins of small <u>s</u>ize) complex, including <em>OSGEP</em>, <em>TP5</em>3RK, <span><em>TPRKB</em></span> and <em>LAGE3</em>. Until now, these components have been functionally mainly investigated in <em>bacteria</em>, <em>eukarya</em> and <span><em>archaea</em></span><span> and in humans in the context of the discovery of its role in GAMOS, but the KEOPS complex members’ expression and function during embryogenesis in vertebrates is still unknown.</span></p><p>In this study, <em>in silico</em><span> analysis showed that both gene localization and the protein sequences of the three core KEOPS complex members Osgep, Tp53rk and Tprkb are highly conserved across different species including </span><span><em>Xenopus</em><em> laevis</em></span>. In addition, we examined the spatio-temporal expression pattern of <em>osgep</em>, <em>tp53rk</em> and <em>tprkb</em> using RT-PCR and whole mount <em>in situ</em> hybridization approaches during early <em>Xenopus</em> development. We observed that all three genes were expressed during early embryogenesis and enriched in tissues and organs affected in GAMOS. More precisely, KEOPS complex genes are expressed in the pronephros, but also in neural tissue such as the developing brain, eye and cranial cartilage.</p><p>These findings suggest that the KEOPS complex plays an important role during vertebrate embryonic development.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"42 ","pages":"Article 119215"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X21000508","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Galloway-Mowat syndrome (GAMOS) is a rare developmental disease. Patients suffer from congenital brain anomalies combined with renal abnormalities often resulting in an early-onset steroid-resistant nephrotic syndrome.
The etiology of GAMOS has a heterogeneous genetic contribution. Mutations in more than 10 different genes have been reported in GAMOS patients. Among these are mutations in four genes encoding members of the human KEOPS (kinase, endopeptidase and other proteins of small size) complex, including OSGEP, TP53RK, TPRKB and LAGE3. Until now, these components have been functionally mainly investigated in bacteria, eukarya and archaea and in humans in the context of the discovery of its role in GAMOS, but the KEOPS complex members’ expression and function during embryogenesis in vertebrates is still unknown.
In this study, in silico analysis showed that both gene localization and the protein sequences of the three core KEOPS complex members Osgep, Tp53rk and Tprkb are highly conserved across different species including Xenopus laevis. In addition, we examined the spatio-temporal expression pattern of osgep, tp53rk and tprkb using RT-PCR and whole mount in situ hybridization approaches during early Xenopus development. We observed that all three genes were expressed during early embryogenesis and enriched in tissues and organs affected in GAMOS. More precisely, KEOPS complex genes are expressed in the pronephros, but also in neural tissue such as the developing brain, eye and cranial cartilage.
These findings suggest that the KEOPS complex plays an important role during vertebrate embryonic development.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation