Interactions between Endoplasmic Reticulum Stress and Autophagy: Implications for Apoptosis and Neuroplasticity-Related Proteins in Palmitic Acid-Treated Prefrontal Cells.

IF 3 4区 医学 Q2 NEUROSCIENCES
Neural Plasticity Pub Date : 2021-10-04 eCollection Date: 2021-01-01 DOI:10.1155/2021/8851327
Xiangli Xue, Feng Li, Ming Cai, Jingyun Hu, Qian Wang, Shujie Lou
{"title":"Interactions between Endoplasmic Reticulum Stress and Autophagy: Implications for Apoptosis and Neuroplasticity-Related Proteins in Palmitic Acid-Treated Prefrontal Cells.","authors":"Xiangli Xue,&nbsp;Feng Li,&nbsp;Ming Cai,&nbsp;Jingyun Hu,&nbsp;Qian Wang,&nbsp;Shujie Lou","doi":"10.1155/2021/8851327","DOIUrl":null,"url":null,"abstract":"<p><p>Lipotoxicity of palmitic acid (PA) or high-fat diets has been reported to increase endoplasmic reticulum (ER) stress and autophagy in peripheral tissue as well as apoptotic cell death. It also can lead to an AD-like pathological pattern. However, it has been unknown that PA-induced ER stress and autophagy are involved in the regulation of neuroplastic abnormalities. Here, we investigated the roles of ER stress and autophagy in apoptosis and neuroplasticity-related protein expression in PA-treated prefrontal cells. Prefrontal cells dissected from newborn Sprague-Dawley rats were treated with PA compound with ER stress inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA) or PA alone. PA promoted ER stress and autophagy and also cause apoptosis as well as a decline in the expression of neuroplasticity-related proteins. Inhibition of ER stress decreased the expressions of neuroplasticity-related proteins and reduced autophagy activation and apoptosis in PA-treated prefrontal cells. Inhibition of autophagy exacerbated apoptosis and enhanced ER stress in PA-treated prefrontal cells. The present study illustrated that both ER stress and autophagy could be involved in apoptosis and decreased neuroplasticity-related proteins, and the interaction between ER stress and autophagy may play a critical role in apoptosis in PA-treated prefrontal cells. Our results provide new insights into the molecular mechanisms in vitro of lipotoxicity in obesity-related cognitive dysfunction.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505096/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/8851327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Lipotoxicity of palmitic acid (PA) or high-fat diets has been reported to increase endoplasmic reticulum (ER) stress and autophagy in peripheral tissue as well as apoptotic cell death. It also can lead to an AD-like pathological pattern. However, it has been unknown that PA-induced ER stress and autophagy are involved in the regulation of neuroplastic abnormalities. Here, we investigated the roles of ER stress and autophagy in apoptosis and neuroplasticity-related protein expression in PA-treated prefrontal cells. Prefrontal cells dissected from newborn Sprague-Dawley rats were treated with PA compound with ER stress inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA) or PA alone. PA promoted ER stress and autophagy and also cause apoptosis as well as a decline in the expression of neuroplasticity-related proteins. Inhibition of ER stress decreased the expressions of neuroplasticity-related proteins and reduced autophagy activation and apoptosis in PA-treated prefrontal cells. Inhibition of autophagy exacerbated apoptosis and enhanced ER stress in PA-treated prefrontal cells. The present study illustrated that both ER stress and autophagy could be involved in apoptosis and decreased neuroplasticity-related proteins, and the interaction between ER stress and autophagy may play a critical role in apoptosis in PA-treated prefrontal cells. Our results provide new insights into the molecular mechanisms in vitro of lipotoxicity in obesity-related cognitive dysfunction.

Abstract Image

Abstract Image

Abstract Image

内质网应激和自噬之间的相互作用:棕榈酸处理的前额叶细胞凋亡和神经可塑性相关蛋白的含义。
据报道,棕榈酸(PA)或高脂肪饮食的脂肪毒性会增加外周组织的内质网(ER)应激和自噬以及凋亡细胞死亡。它也会导致类似ad的病理模式。然而,pa诱导的内质网应激和自噬是否参与神经可塑性异常的调节尚不清楚。本研究研究了内质网应激和自噬在pa处理的前额叶细胞凋亡和神经可塑性相关蛋白表达中的作用。采用PA联合内质网应激抑制剂4-苯基丁酸(4-PBA)和自噬抑制剂3-甲基腺嘌呤(3-MA)或单独PA处理新生sd大鼠前额叶细胞。PA促进内质网应激和自噬,并引起细胞凋亡和神经可塑性相关蛋白表达下降。内质网应激的抑制降低了神经可塑性相关蛋白的表达,减少了pa处理的前额叶细胞的自噬激活和凋亡。抑制自噬可加重pa处理的前额叶细胞凋亡和内质网应激。本研究表明内质网应激和自噬均可参与凋亡和神经可塑性相关蛋白的减少,内质网应激和自噬的相互作用可能在pa处理的前额叶细胞凋亡中起关键作用。我们的研究结果为肥胖相关认知功能障碍中脂肪毒性的体外分子机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信