{"title":"The effects of ethyl pyruvate against experimentally induced cisplatin ototoxicity in rats.","authors":"Muhammed Ayral, Serdar Ferit Toprak","doi":"10.1080/08990220.2021.1984875","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cisplatin (CDDP) is a widely used antineoplastic drug. However, its use is limited due to the ototoxic side effects. In this study, the effects of ethyl pyruvate (EP), known for its antioxidant and anti-inflammatory effects, against CDDP ototoxicity were investigated.</p><p><strong>Methods: </strong>Thirty-two Wistar albino rats (n:8) were used in this study. CDDP was administered i.p. as a single dose of 15 mg/kg/day in order to cause ototoxicity. EP was applied i.p. at a dose of 50 mg/kg/day for 7 days.</p><p><strong>Results: </strong>When the Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) tests carried out in the pre-treatment and post-treatment periods were examined, it was observed that the hearing functions were significantly impaired with the CDDP application, while a significant improvement was observed in the CDDP + EP group. Compared to the control group, the CDDP group had significantly higher malondialdehyde (MDA) levels and significantly lower glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) levels. In the CDDP + EP group, there was no deterioration in MDA, SOD and CAT levels that was observed in the CDDP group. The increase in pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) levels caused by CDDP administration was observed to be significantly decreased in the CDDP + EP group.</p><p><strong>Conclusions: </strong>Hearing tests and biochemical results show that ethyl pyruvate is protective against cisplatin ototoxicity with its antioxidant and anti-inflammatory effects.</p>","PeriodicalId":49498,"journal":{"name":"Somatosensory and Motor Research","volume":"38 4","pages":"347-352"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory and Motor Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08990220.2021.1984875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Cisplatin (CDDP) is a widely used antineoplastic drug. However, its use is limited due to the ototoxic side effects. In this study, the effects of ethyl pyruvate (EP), known for its antioxidant and anti-inflammatory effects, against CDDP ototoxicity were investigated.
Methods: Thirty-two Wistar albino rats (n:8) were used in this study. CDDP was administered i.p. as a single dose of 15 mg/kg/day in order to cause ototoxicity. EP was applied i.p. at a dose of 50 mg/kg/day for 7 days.
Results: When the Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) tests carried out in the pre-treatment and post-treatment periods were examined, it was observed that the hearing functions were significantly impaired with the CDDP application, while a significant improvement was observed in the CDDP + EP group. Compared to the control group, the CDDP group had significantly higher malondialdehyde (MDA) levels and significantly lower glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) levels. In the CDDP + EP group, there was no deterioration in MDA, SOD and CAT levels that was observed in the CDDP group. The increase in pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) levels caused by CDDP administration was observed to be significantly decreased in the CDDP + EP group.
Conclusions: Hearing tests and biochemical results show that ethyl pyruvate is protective against cisplatin ototoxicity with its antioxidant and anti-inflammatory effects.
期刊介绍:
Somatosensory & Motor Research publishes original, high-quality papers that encompass the entire range of investigations related to the neural bases for somatic sensation, somatic motor function, somatic motor integration, and modeling thereof. Comprising anatomical, physiological, biochemical, pharmacological, behavioural, and psychophysical studies, Somatosensory & Motor Research covers all facets of the peripheral and central processes underlying cutaneous sensation, and includes studies relating to afferent and efferent mechanisms of deep structures (e.g., viscera, muscle). Studies of motor systems at all levels of the neuraxis are covered, but reports restricted to non-neural aspects of muscle generally would belong in other journals.