{"title":"The effect of men who have sex with men (MSM) on the spread of sexually transmitted infections.","authors":"Hiromu Ito, Taro Yamamoto, Satoru Morita","doi":"10.1186/s12976-021-00148-9","DOIUrl":null,"url":null,"abstract":"<p><p>Sexually transmitted infections (STIs) have remained a worldwide public health threat. It is difficult to control the spread of STIs, not only because of heterogeneous sexual transmission between men and women but also because of the complicated effects of sexual transmission among men who have sex with men (MSM) and mother-to-child transmission. Many studies point to the existence of a 'bisexual bridge', where STIs spread from the MSM network via bisexual connections. However, it is unclear how the MSM network affects heterosexual networks as well as mother-to-child transmission. To analyse the effect of MSM on the spread of STIs, we divided the population into four subpopulations: (i) women, (ii) men who have sex with women only (MSW), (iii) men who have sex with both men and women (MSMW), (iv) men who have sex with men exclusively (MSME). We calculated the type-reproduction numbers of these four subpopulations, and our analysis determined what preventive measures may be effective. Our analysis shows the impact of bisexual bridge on the spread of STIs does not outweigh their population size. Since MSM and mother-to-child transmission rates do not have a strong synergistic effect when combined, complementary prevention measures are needed. The methodologies and findings we have provided here will contribute greatly to the future development of public health.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504019/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-021-00148-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Sexually transmitted infections (STIs) have remained a worldwide public health threat. It is difficult to control the spread of STIs, not only because of heterogeneous sexual transmission between men and women but also because of the complicated effects of sexual transmission among men who have sex with men (MSM) and mother-to-child transmission. Many studies point to the existence of a 'bisexual bridge', where STIs spread from the MSM network via bisexual connections. However, it is unclear how the MSM network affects heterosexual networks as well as mother-to-child transmission. To analyse the effect of MSM on the spread of STIs, we divided the population into four subpopulations: (i) women, (ii) men who have sex with women only (MSW), (iii) men who have sex with both men and women (MSMW), (iv) men who have sex with men exclusively (MSME). We calculated the type-reproduction numbers of these four subpopulations, and our analysis determined what preventive measures may be effective. Our analysis shows the impact of bisexual bridge on the spread of STIs does not outweigh their population size. Since MSM and mother-to-child transmission rates do not have a strong synergistic effect when combined, complementary prevention measures are needed. The methodologies and findings we have provided here will contribute greatly to the future development of public health.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.