Human antigen R promotes angiogenesis of endothelial cells cultured with adipose stem cells derived exosomes via overexpression of vascular endothelial growth factor in vitro.
{"title":"Human antigen R promotes angiogenesis of endothelial cells cultured with adipose stem cells derived exosomes via overexpression of vascular endothelial growth factor in vitro.","authors":"Guo Li, Youbai Chen, Yudi Han, Tian Ma, Yan Han","doi":"10.1080/21623945.2021.1982577","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies showed that exosomes obtained from adipose-derived stem cells (ADSCs) could improve the angiogenesis of fat grafts via overexpression of vascular endothelial growth factor (VEGF). Human antigen R (HuR) promotes the expression of VEGF in many cancers, but the effect of HuR in normal endothelial cells in the presence of ADSC-derived exosomes remains unclear. We aimed to investigate the effect of HuR on the expression of VEGF and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with ADSCs-derived exosomes. The HuR-overexpressed HUVECs (HuR-HUVECs) were cocultured with ADSCs-derived exosomes. qRT-PCR and Western blotting were performed to examine the stability and expression of VEGF-A mRNA and protein. The proliferation, migration, and proangiogenic capacity of HuR-HUVECs were evaluated using cell counting kit-8 (CCK-8), scratch wound healing, and Matrigel tube formation assay. qRT-PCR showed that HuR-HUVECs had higher expression and slower attenuation of VEGF-A mRNA. Western blotting confirmed higher expression of VEGF-A in HuR-HUVECs. CCK-8, scratch wound healing, and Matrigel tube formation assay demonstrated an increased proangiogenic effect in HuR-HUVECs. HuR promotes angiogenesis of HUVECs cocultured with ADSCs-derived exosomes via stabilization and overexpression of VEGF in vitro. The HuR/VEGF pathway is an important regulatory mechanism of angiogenesis in endothelial cells.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"10 1","pages":"475-482"},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510607/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1982577","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 6
Abstract
Recent studies showed that exosomes obtained from adipose-derived stem cells (ADSCs) could improve the angiogenesis of fat grafts via overexpression of vascular endothelial growth factor (VEGF). Human antigen R (HuR) promotes the expression of VEGF in many cancers, but the effect of HuR in normal endothelial cells in the presence of ADSC-derived exosomes remains unclear. We aimed to investigate the effect of HuR on the expression of VEGF and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with ADSCs-derived exosomes. The HuR-overexpressed HUVECs (HuR-HUVECs) were cocultured with ADSCs-derived exosomes. qRT-PCR and Western blotting were performed to examine the stability and expression of VEGF-A mRNA and protein. The proliferation, migration, and proangiogenic capacity of HuR-HUVECs were evaluated using cell counting kit-8 (CCK-8), scratch wound healing, and Matrigel tube formation assay. qRT-PCR showed that HuR-HUVECs had higher expression and slower attenuation of VEGF-A mRNA. Western blotting confirmed higher expression of VEGF-A in HuR-HUVECs. CCK-8, scratch wound healing, and Matrigel tube formation assay demonstrated an increased proangiogenic effect in HuR-HUVECs. HuR promotes angiogenesis of HUVECs cocultured with ADSCs-derived exosomes via stabilization and overexpression of VEGF in vitro. The HuR/VEGF pathway is an important regulatory mechanism of angiogenesis in endothelial cells.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.