{"title":"Genetic interaction between RLM1 and F-box motif encoding gene SAF1 contributes to stress response in Saccharomyces cerevisiae.","authors":"Meenu Sharma, V Verma, Narendra K Bairwa","doi":"10.1186/s41021-021-00218-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stress response is mediated by the transcription of stress-responsive genes. The F-box motif protein Saf1p is involved in SCF-E3 ligase mediated degradation of the adenine deaminase, Aah1p upon nutrient stress. The four transcription regulators, BUR6, MED6, SPT10, SUA7, are listed for SAF1 in the genome database of Saccharomyces cerevisiae. Here in this study, we carried out an in-silico analysis of gene expression and transcription factor databases to understand the regulation of SAF1 expression during stress for hypothesis and experimental analysis.</p><p><strong>Result: </strong>An analysis of the GEO profile database indicated an increase in SAF1 expression when cells were treated with stress agents such as Clioquinol, Pterostilbene, Gentamicin, Hypoxia, Genotoxic, desiccation, and heat. The increase in expression of SAF1 during stress conditions correlated positively with the expression of RLM1, encoding the Rlm1p transcription factor. The expression of AAH1 encoding Aah1p, a Saf1p substrate for ubiquitination, appeared to be negatively correlated with the expression of RLM1 as revealed by an analysis of the Yeastract expression database. Based on analysis of expression profile and regulatory association of SAF1 and RLM1, we hypothesized that inactivation of both the genes together may contribute to stress tolerance. The experimental analysis of cellular growth response of cells lacking both SAF1 and RLM1 to selected stress agents such as cell wall and osmo-stressors, by spot assay indicated stress tolerance phenotype similar to parental strain however sensitivity to genotoxic and microtubule depolymerizing stress agents.</p><p><strong>Conclusions: </strong>Based on in-silico and experimental data we suggest that SAF1 and RLM1 both interact genetically in differential response to genotoxic and general stressors.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" ","pages":"45"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501602/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-021-00218-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Stress response is mediated by the transcription of stress-responsive genes. The F-box motif protein Saf1p is involved in SCF-E3 ligase mediated degradation of the adenine deaminase, Aah1p upon nutrient stress. The four transcription regulators, BUR6, MED6, SPT10, SUA7, are listed for SAF1 in the genome database of Saccharomyces cerevisiae. Here in this study, we carried out an in-silico analysis of gene expression and transcription factor databases to understand the regulation of SAF1 expression during stress for hypothesis and experimental analysis.
Result: An analysis of the GEO profile database indicated an increase in SAF1 expression when cells were treated with stress agents such as Clioquinol, Pterostilbene, Gentamicin, Hypoxia, Genotoxic, desiccation, and heat. The increase in expression of SAF1 during stress conditions correlated positively with the expression of RLM1, encoding the Rlm1p transcription factor. The expression of AAH1 encoding Aah1p, a Saf1p substrate for ubiquitination, appeared to be negatively correlated with the expression of RLM1 as revealed by an analysis of the Yeastract expression database. Based on analysis of expression profile and regulatory association of SAF1 and RLM1, we hypothesized that inactivation of both the genes together may contribute to stress tolerance. The experimental analysis of cellular growth response of cells lacking both SAF1 and RLM1 to selected stress agents such as cell wall and osmo-stressors, by spot assay indicated stress tolerance phenotype similar to parental strain however sensitivity to genotoxic and microtubule depolymerizing stress agents.
Conclusions: Based on in-silico and experimental data we suggest that SAF1 and RLM1 both interact genetically in differential response to genotoxic and general stressors.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.