Virophages: association with human diseases and their predicted role as virus killers.

IF 2.7 4区 医学 Q3 IMMUNOLOGY
Debrupa Dutta, Velayutham Ravichandiran, Soumi Sukla
{"title":"Virophages: association with human diseases and their predicted role as virus killers.","authors":"Debrupa Dutta,&nbsp;Velayutham Ravichandiran,&nbsp;Soumi Sukla","doi":"10.1093/femspd/ftab049","DOIUrl":null,"url":null,"abstract":"<p><p>The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"79 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftab049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.

噬菌体:与人类疾病的关系及其作为病毒杀手的预期作用。
2008年发现的第一个巨型病毒——多食棘阿米巴mimivirus (APMV),以及与之相关的病毒噬菌体Sputnik,震惊了微生物学界。APMV属于Mimiviridae科。迄今为止,已经从不同的环境来源中分离出了大约18种噬菌体。由于具有抗宿主细胞感染和抗巨病毒裂解(类似噬菌体)的独特特性,它们被归为巨病毒科。T-27是二十面体形状的非包膜病毒噬菌体,其基因组由dsDNA组成,编码主衣壳蛋白、次衣壳蛋白、atp酶和半胱氨酸蛋白酶等四种蛋白,在病毒复制过程中形成和组装新的病毒噬菌体颗粒至关重要。一些噬菌体基因组已被观察到含有额外的序列,如PolB, ZnR和S3H。病毒噬菌体的另一个有趣的特征是,MIMIVIRE病毒谱系A通过一种称为MIMIVIRE的现象对Zamilon病毒噬菌体的感染免疫,类似于细菌中的CRISPR-Cas机制。在医院获得性肺炎和类风湿关节炎患者的临床样本中发现了巨大的病毒,因此,噬菌体开启了寻找各种疾病治疗方法的新时代。本文旨在探讨噬菌体在未来人类治疗中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信