Jacob Rembish, Pamela Myers, Daniel Saenz, Neil Kirby, Nikos Papanikolaou, Sotirios Stathakis
{"title":"Effects of varying statistical uncertainty using a Monte Carlo based treatment planning system for VMAT.","authors":"Jacob Rembish, Pamela Myers, Daniel Saenz, Neil Kirby, Nikos Papanikolaou, Sotirios Stathakis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine the severity of the effects on VMAT dose calculations caused by varying statistical uncertainties (SU) per control point in a Monte Carlo based treatment planning system (TPS) and to assess the impact of the uncertainty during dose volume histogram (DVH) evaluation.</p><p><strong>Methods: </strong>For this study, 13 archived patient plans were selected for recalculation. Treatment sites included prostate, lung, and head and neck. These plans were each recalculated five times with varying uncertainty levels using Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC dose calculation algorithm. The statistical uncertainty per control point ranged from 2 to 10% at intervals of 2%, while the grid spacing was set at 3 mm for all calculations. Indices defined by the RTOG describing conformity, coverage, and homogeneity were recorded for each recalculation.</p><p><strong>Results: </strong>For all indices tested, one-way ANOVA tests failed to reject the null hypothesis that there is no significant difference between SU levels (p>0.05). Using the Bland-Altman analysis method, it was determined that we can expect the indices (with the exception of CIRTOG) to be within 1% of the lowest uncertainty calculation when calculating at 4% SU per control point. Beyond that, we can expect the indices to be within 3% of the lowest uncertainty calculation.</p><p><strong>Conclusion: </strong>Increasing the SU per control point exponentially decreased the amount of time required for dose calculations, while creating minimal observable differences in DVHs and isodose lines.</p>","PeriodicalId":50248,"journal":{"name":"Journal of Buon","volume":" ","pages":"1683"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Buon","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To determine the severity of the effects on VMAT dose calculations caused by varying statistical uncertainties (SU) per control point in a Monte Carlo based treatment planning system (TPS) and to assess the impact of the uncertainty during dose volume histogram (DVH) evaluation.
Methods: For this study, 13 archived patient plans were selected for recalculation. Treatment sites included prostate, lung, and head and neck. These plans were each recalculated five times with varying uncertainty levels using Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC dose calculation algorithm. The statistical uncertainty per control point ranged from 2 to 10% at intervals of 2%, while the grid spacing was set at 3 mm for all calculations. Indices defined by the RTOG describing conformity, coverage, and homogeneity were recorded for each recalculation.
Results: For all indices tested, one-way ANOVA tests failed to reject the null hypothesis that there is no significant difference between SU levels (p>0.05). Using the Bland-Altman analysis method, it was determined that we can expect the indices (with the exception of CIRTOG) to be within 1% of the lowest uncertainty calculation when calculating at 4% SU per control point. Beyond that, we can expect the indices to be within 3% of the lowest uncertainty calculation.
Conclusion: Increasing the SU per control point exponentially decreased the amount of time required for dose calculations, while creating minimal observable differences in DVHs and isodose lines.
期刊介绍:
JBUON aims at the rapid diffusion of scientific knowledge in Oncology.
Its character is multidisciplinary, therefore all aspects of oncologic activities are welcome including clinical research (medical oncology, radiation oncology, surgical oncology, nursing oncology, psycho-oncology, supportive care), as well as clinically-oriented basic and laboratory research, cancer epidemiology and social and ethical aspects of cancer. Experts of all these disciplines are included in the Editorial Board.
With a rapidly increasing body of new discoveries in clinical therapeutics, the molecular mechanisms that contribute to carcinogenesis, advancements in accurate and early diagnosis etc, JBUON offers a free forum for clinicians and basic researchers to make known promptly their achievements around the world.
With this aim JBUON accepts a broad spectrum of articles such as editorials, original articles, reviews, special articles, short communications, commentaries, letters to the editor and correspondence among authors and readers.
JBUON keeps the characteristics of its former paper print edition and appears as a bimonthly e-published journal with continuous volume, issue and page numbers.