{"title":"The temporal analysis of elite breaststroke swimming during competition.","authors":"E Nicol, N Adani, B Lin, E Tor","doi":"10.1080/14763141.2021.1975810","DOIUrl":null,"url":null,"abstract":"<p><p>Breaststroke is the only competitive stroke characterised by propulsive discontinuity. It is consequently paramount that swimmers optimally coordinate limb movements in order to maintain the highest average velocity possible. The present study aimed to investigate the temporal patterns of elite breaststroke swimmers. 50 m long-course competition footage of (1) 20 male 100 m races, (2) 24 female 100 m races, (3) 15 male 200 m races, and (4) 27 female 200 m races from 2018 to 2020 were digitised and analysed. Six points within each stroke cycle were identified and used to calculate 15 temporal parameters. Analyses revealed multiple temporal pattern differences between groups based on sex and race distance. It is recommended that coaches individualise swimmers' breaststroke temporal patterns based on individual needs, strengths, and morphological characteristics.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1692-1704"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1975810","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breaststroke is the only competitive stroke characterised by propulsive discontinuity. It is consequently paramount that swimmers optimally coordinate limb movements in order to maintain the highest average velocity possible. The present study aimed to investigate the temporal patterns of elite breaststroke swimmers. 50 m long-course competition footage of (1) 20 male 100 m races, (2) 24 female 100 m races, (3) 15 male 200 m races, and (4) 27 female 200 m races from 2018 to 2020 were digitised and analysed. Six points within each stroke cycle were identified and used to calculate 15 temporal parameters. Analyses revealed multiple temporal pattern differences between groups based on sex and race distance. It is recommended that coaches individualise swimmers' breaststroke temporal patterns based on individual needs, strengths, and morphological characteristics.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.