Wenyi Liu, Luoxi Li, Jianxin Jiang, Min Wu, Ping Lin
{"title":"Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.","authors":"Wenyi Liu, Luoxi Li, Jianxin Jiang, Min Wu, Ping Lin","doi":"10.1093/pcmedi/pbab014","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems (Cas) are efficient tools for targeting specific genes for laboratory research, agricultural engineering, biotechnology, and human disease treatment. Cas9, by far the most extensively used gene-editing nuclease, has shown great promise for the treatment of hereditary diseases, viral infection, cancers, and so on. Recent reports have revealed that some other types of CRISPR-Cas systems may also have surprising potential to join the fray as gene-editing tools for various applications. Despite the rapid progress in basic research and clinical tests, some underlying problems present continuous, significant challenges, such as editing efficiency, relative difficulty in delivery, off-target effects, immunogenicity, etc. This article summarizes the applications of CRISPR-Cas from bench to bedside and highlights the current obstacles that may limit the usage of CRISPR-Cas systems as gene-editing toolkits in precision medicine and offer some viewpoints that may help to tackle these challenges and facilitate technical development. CRISPR-Cas systems, as a powerful gene-editing approach, will offer great hopes in clinical treatments for many individuals with currently incurable diseases.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbab014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems (Cas) are efficient tools for targeting specific genes for laboratory research, agricultural engineering, biotechnology, and human disease treatment. Cas9, by far the most extensively used gene-editing nuclease, has shown great promise for the treatment of hereditary diseases, viral infection, cancers, and so on. Recent reports have revealed that some other types of CRISPR-Cas systems may also have surprising potential to join the fray as gene-editing tools for various applications. Despite the rapid progress in basic research and clinical tests, some underlying problems present continuous, significant challenges, such as editing efficiency, relative difficulty in delivery, off-target effects, immunogenicity, etc. This article summarizes the applications of CRISPR-Cas from bench to bedside and highlights the current obstacles that may limit the usage of CRISPR-Cas systems as gene-editing toolkits in precision medicine and offer some viewpoints that may help to tackle these challenges and facilitate technical development. CRISPR-Cas systems, as a powerful gene-editing approach, will offer great hopes in clinical treatments for many individuals with currently incurable diseases.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.