Silvia Radosa, Jakob L. Sprague, Siu-Hin Lau, Renáta Tóth, Jörg Linde, Thomas Krüger, Marcel Sprenger, Lydia Kasper, Martin Westermann, Olaf Kniemeyer, Bernhard Hube, Axel A. Brakhage, Attila Gácser, Falk Hillmann
{"title":"The fungivorous amoeba Protostelium aurantium targets redox homeostasis and cell wall integrity during intracellular killing of Candida parapsilosis","authors":"Silvia Radosa, Jakob L. Sprague, Siu-Hin Lau, Renáta Tóth, Jörg Linde, Thomas Krüger, Marcel Sprenger, Lydia Kasper, Martin Westermann, Olaf Kniemeyer, Bernhard Hube, Axel A. Brakhage, Attila Gácser, Falk Hillmann","doi":"10.1111/cmi.13389","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba <i>Protostelium aurantium</i> has a wide fungal food spectrum including foremost pathogenic members of the genus <i>Candida</i>. Here we show that upon phagocytic ingestion by the amoeba, <i>Candida parapsilosis</i> is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene <i>CRP1</i> and the peroxiredoxin gene <i>PRX1</i> contributing to survival when encountered with <i>P. aurantium</i>. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of <i>C. parapsilosis</i> in vitro. Proteomic analysis identified 56 vesicular proteins from <i>P. aurantium</i>. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments.</p>\n </section>\n \n <section>\n \n <h3> Take Away</h3>\n \n <div>\n <ul>\n \n <li>The amoeba <i>Protostelium aurantium</i> feeds on fungi, such as <i>Candida parapsilosis</i>.</li>\n \n <li>Ingested yeast cells are exposed to reactive oxygen species.</li>\n \n <li>A copper exporter and a peroxiredoxin contribute to fungal defence.</li>\n \n <li>Yeast cells undergo intracellular lysis.</li>\n \n <li>Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13389","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13389","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments.
Take Away
The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis.
Ingested yeast cells are exposed to reactive oxygen species.
A copper exporter and a peroxiredoxin contribute to fungal defence.
Yeast cells undergo intracellular lysis.
Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.
期刊介绍:
Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.