Seeking Insights into Aging Through Yeast Mitochondrial Electrophysiology.

IF 1.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bioelectricity Pub Date : 2021-06-01 Epub Date: 2021-06-16 DOI:10.1089/bioe.2021.0011
Tailise Carolina de Souza-Guerreiro, Munehiro Asally
{"title":"Seeking Insights into Aging Through Yeast Mitochondrial Electrophysiology.","authors":"Tailise Carolina de Souza-Guerreiro,&nbsp;Munehiro Asally","doi":"10.1089/bioe.2021.0011","DOIUrl":null,"url":null,"abstract":"<p><p>During aging, mitochondrial membrane potential, a key indicator for bioenergetics of cells, depolarizes in a wide range of species-from yeasts, plants to animals. In humans, the decline of mitochondrial activities can impact the high-energy-consuming organs, such as the brain and heart, and increase the risks of age-linked diseases. Intriguingly, a mild depolarization of mitochondria has lifespan-extending effects, suggesting an important role played by bioelectricity during aging. However, the underpinning biophysical mechanism is not very well understood due in part to the difficulties associated with a multiscale process. Budding yeast <i>Saccharomyces cerevisiae</i> could provide a model system to bridge this knowledge gap and provide insights into aging. In this perspective, we overview recent studies on the yeast mitochondrial membrane electrophysiology and aging and call for more electrochemical and biophysical studies on aging.</p>","PeriodicalId":29923,"journal":{"name":"Bioelectricity","volume":"3 2","pages":"111-115"},"PeriodicalIF":1.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380933/pdf/bioe.2021.0011.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/bioe.2021.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

During aging, mitochondrial membrane potential, a key indicator for bioenergetics of cells, depolarizes in a wide range of species-from yeasts, plants to animals. In humans, the decline of mitochondrial activities can impact the high-energy-consuming organs, such as the brain and heart, and increase the risks of age-linked diseases. Intriguingly, a mild depolarization of mitochondria has lifespan-extending effects, suggesting an important role played by bioelectricity during aging. However, the underpinning biophysical mechanism is not very well understood due in part to the difficulties associated with a multiscale process. Budding yeast Saccharomyces cerevisiae could provide a model system to bridge this knowledge gap and provide insights into aging. In this perspective, we overview recent studies on the yeast mitochondrial membrane electrophysiology and aging and call for more electrochemical and biophysical studies on aging.

通过酵母线粒体电生理学研究衰老。
在衰老过程中,从酵母、植物到动物,线粒体膜电位作为细胞生物能量学的关键指标,在许多物种中都发生去极化。在人类中,线粒体活动的下降会影响高能量消耗器官,如大脑和心脏,并增加与年龄相关的疾病的风险。有趣的是,线粒体的轻度去极化具有延长寿命的作用,这表明生物电在衰老过程中发挥了重要作用。然而,由于与多尺度过程相关的困难,其基础生物物理机制尚未得到很好的理解。酿酒酵母可以提供一个模型系统来弥合这一知识鸿沟,并为衰老提供见解。在此基础上,本文综述了近年来酵母线粒体膜电生理和衰老的研究进展,并呼吁开展更多关于衰老的电化学和生物物理研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectricity
Bioelectricity Multiple-
CiteScore
3.40
自引率
4.30%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信