Kalpana Jorasia, Rajani Kr Paul, N S Rathore, Pyare Lal, R Singh, Meenaxi Sareen
{"title":"Production of bioactive recombinant ovine cysteine-rich secretory protein 1 in Escherichia coli.","authors":"Kalpana Jorasia, Rajani Kr Paul, N S Rathore, Pyare Lal, R Singh, Meenaxi Sareen","doi":"10.1080/19396368.2021.1963012","DOIUrl":null,"url":null,"abstract":"<p><p>Ovine cysteine-rich secretory protein 1 (CRISP-1) is an acidic glycoprotein of epididymal origin under CRISP, antigen 5, pathogenesis-related protein 1 (CAP) super-family. The aim of the present study was the optimization of bacterial production and partial characterization of putative mature ovine CRISP-1 protein. The cDNA corresponding to T<sup>23 -</sup> C<sup>242</sup> peptide fragment of ovine CRISP-1 protein was cloned into THE pET32b(+) expression vector using <i>E. coli</i> DH5α. Protein expression was carried out in <i>E. coli</i> BL21(DE3) by inducition with 1 mM IPTG at 37°C for 4 h. The recombinant protein was expressed as inclusion bodies and purified by Ni-NTA affinity chromatography using a pH gradient. Further purification of the protein was carried out by gel extraction following zinc sulfate negative staining. SDS-PAGE analysis of the purified recombinant CRISP-1 protein revealed a 43.8 kDa band. Bioactivity of the purified CRISP-1 protein was examined on sperm motility and capacitation. The recombinant ovine CRISP-1 protein at 5 µg/ml caused significant inhibition of sperm motility, and the activity was lost following heating the protein at 100°C for 5 min. The protein also demonstrated decapacitation activity, and at a concentration of 2 µg/ml, it caused a significant (P < 0.05) reduction in sperm capacitation. In conclusion, the thioredoxin-tagged ovine CRISP-1 protein was successfully produced in <i>E. coli</i> and purified in the soluble form by a combination of Ni-NTA affinity chromatography, gel purification, and dialysis. The recombinant protein exhibited both motility-inhibiting and decapacitating activities. Further study is needed to elucidate the mechanism of action and evaluate it's possible use in semen preservation.<b>Abbreviations:</b> CRISP-1: Cysteine-rich secretory protein-1; <i>PCR: polymerase chain reaction; IPTG: isopropyl-β-D-thiogalactopyranoside; LB: Luria Bertani; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; EDTA: ethylene diamine tetraacetic acid; Ni-NTA: Nickel nitrilotriacetic acid.</i></p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"67 6","pages":"471-481"},"PeriodicalIF":2.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2021.1963012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovine cysteine-rich secretory protein 1 (CRISP-1) is an acidic glycoprotein of epididymal origin under CRISP, antigen 5, pathogenesis-related protein 1 (CAP) super-family. The aim of the present study was the optimization of bacterial production and partial characterization of putative mature ovine CRISP-1 protein. The cDNA corresponding to T23 - C242 peptide fragment of ovine CRISP-1 protein was cloned into THE pET32b(+) expression vector using E. coli DH5α. Protein expression was carried out in E. coli BL21(DE3) by inducition with 1 mM IPTG at 37°C for 4 h. The recombinant protein was expressed as inclusion bodies and purified by Ni-NTA affinity chromatography using a pH gradient. Further purification of the protein was carried out by gel extraction following zinc sulfate negative staining. SDS-PAGE analysis of the purified recombinant CRISP-1 protein revealed a 43.8 kDa band. Bioactivity of the purified CRISP-1 protein was examined on sperm motility and capacitation. The recombinant ovine CRISP-1 protein at 5 µg/ml caused significant inhibition of sperm motility, and the activity was lost following heating the protein at 100°C for 5 min. The protein also demonstrated decapacitation activity, and at a concentration of 2 µg/ml, it caused a significant (P < 0.05) reduction in sperm capacitation. In conclusion, the thioredoxin-tagged ovine CRISP-1 protein was successfully produced in E. coli and purified in the soluble form by a combination of Ni-NTA affinity chromatography, gel purification, and dialysis. The recombinant protein exhibited both motility-inhibiting and decapacitating activities. Further study is needed to elucidate the mechanism of action and evaluate it's possible use in semen preservation.Abbreviations: CRISP-1: Cysteine-rich secretory protein-1; PCR: polymerase chain reaction; IPTG: isopropyl-β-D-thiogalactopyranoside; LB: Luria Bertani; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; EDTA: ethylene diamine tetraacetic acid; Ni-NTA: Nickel nitrilotriacetic acid.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.