Michael Decker, Amber Price, Aria Khalili, Robert Klassen, Mary Jane Walzak, Matthew Teeter, Richard McCalden, Brent Lanting
{"title":"The Impact of Free Radical Stabilization Techniques on in vivo Mechanical Changes in Highly Cross-Linked Polyethylene Acetabular Liners.","authors":"Michael Decker, Amber Price, Aria Khalili, Robert Klassen, Mary Jane Walzak, Matthew Teeter, Richard McCalden, Brent Lanting","doi":"10.2147/ORR.S309210","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Numerous thermal free radical stabilization techniques are used in the production of highly cross-linked polyethylene (HXLPE) to improve oxidative stability. Little knowledge exists on the effects of in vivo time on the mechanical properties of HXLPE. The purpose of this study was to determine if free radical stabilization of HXLPE impacts mechanical properties as well as oxidative stability of acetabular liner rims after extended in vivo time.</p><p><strong>Methods: </strong>Retrieved and control remelted, single annealed and sequentially annealed HXLPE liner rims were tested for mechanical properties. Oxidation was measured with FTIR spectroscopy and crystalline phase composition measured with Raman spectroscopy.</p><p><strong>Results: </strong>No correlation was found between in vivo, ex vivo time and hardness for annealed groups. A statistically significant difference in hardness was identified between free radical stabilization groups. No correlation between maximum rim oxidation and in vivo time was found. Detectable levels of rim oxidation were present in 100% of single annealed, 75% of sequentially annealed, and 25% of remelted retrieved liners. Single and sequentially annealed liners demonstrated oxidation and increased crystallinity. Rim mechanical properties change in vivo for implant types. With in vivo time, retrieved remelted HXLPE demonstrated decreased mechanical properties, whereas retrieved single and sequentially annealed HXLPE properties remained stable. All liner cohorts demonstrated evidence of rim oxidation. Subsequent changes in crystallinity were only observed in oxidized annealed liners.</p><p><strong>Conclusion: </strong>HXLPE acetabular liner rims show evidence of in vivo mechanical property degradation, notably in remelted HXLPE, which may be a risk factor in rim fracture and catastrophic implant failure.</p>","PeriodicalId":19608,"journal":{"name":"Orthopedic Research and Reviews","volume":"13 ","pages":"113-122"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/7c/orr-13-113.PMC8380133.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthopedic Research and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/ORR.S309210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2
Abstract
Introduction: Numerous thermal free radical stabilization techniques are used in the production of highly cross-linked polyethylene (HXLPE) to improve oxidative stability. Little knowledge exists on the effects of in vivo time on the mechanical properties of HXLPE. The purpose of this study was to determine if free radical stabilization of HXLPE impacts mechanical properties as well as oxidative stability of acetabular liner rims after extended in vivo time.
Methods: Retrieved and control remelted, single annealed and sequentially annealed HXLPE liner rims were tested for mechanical properties. Oxidation was measured with FTIR spectroscopy and crystalline phase composition measured with Raman spectroscopy.
Results: No correlation was found between in vivo, ex vivo time and hardness for annealed groups. A statistically significant difference in hardness was identified between free radical stabilization groups. No correlation between maximum rim oxidation and in vivo time was found. Detectable levels of rim oxidation were present in 100% of single annealed, 75% of sequentially annealed, and 25% of remelted retrieved liners. Single and sequentially annealed liners demonstrated oxidation and increased crystallinity. Rim mechanical properties change in vivo for implant types. With in vivo time, retrieved remelted HXLPE demonstrated decreased mechanical properties, whereas retrieved single and sequentially annealed HXLPE properties remained stable. All liner cohorts demonstrated evidence of rim oxidation. Subsequent changes in crystallinity were only observed in oxidized annealed liners.
Conclusion: HXLPE acetabular liner rims show evidence of in vivo mechanical property degradation, notably in remelted HXLPE, which may be a risk factor in rim fracture and catastrophic implant failure.
期刊介绍:
Orthopedic Research and Reviews is an international, peer-reviewed, open-access journal focusing on the patho-physiology of the musculoskeletal system, trauma, surgery and other corrective interventions to restore mobility and function. Advances in new technologies, materials, techniques and pharmacological agents will be particularly welcome. Specific topics covered in the journal include: Patho-physiology and bioengineering, Technologies and materials science, Surgical techniques, including robotics, Trauma management and care, Treatment including pharmacological and non-pharmacological, Rehabilitation and Multidisciplinarian care approaches, Patient quality of life, satisfaction and preference, Health economic evaluations. The journal welcomes submitted papers covering original research, basic science and technology, clinical studies, reviews and evaluations, guidelines, expert opinion and commentary, case reports and extended reports.