Chemical characterisation and appraisal of antidiabetic potential of Terminalia citrina extract in streptozotocin induced hyperglycaemia in Wistar rats.
Ammara Saleem, Muhammad Furqan Akhtar, Ayesha Latif, Mohamed M Abdel-Daim, Mirza Muhammad Faran Ashraf Baig, Mohammad Saleem, Malik Hassan Mehmood
{"title":"Chemical characterisation and appraisal of antidiabetic potential of Terminalia citrina extract in streptozotocin induced hyperglycaemia in Wistar rats.","authors":"Ammara Saleem, Muhammad Furqan Akhtar, Ayesha Latif, Mohamed M Abdel-Daim, Mirza Muhammad Faran Ashraf Baig, Mohammad Saleem, Malik Hassan Mehmood","doi":"10.1080/13813455.2021.1963783","DOIUrl":null,"url":null,"abstract":"<p><p>The current research was aimed to evaluate the antidiabetic activity of <i>Terminalia citrina</i> methanolic extract (TCME) by streptozotocin-induced diabetes in male Wistar rats. TCME exhibited better <i>in-vitro</i> antioxidant and alpha-amylase inhibitory activity as compared to other tested extracts. TCME at 250, 500, and 750 mg/kg showed notable (<i>p</i> < .05) antidiabetic potential by lowering fasting blood glucose level, restoring lipid level, serum amylase, HbA1c, kidney, and liver function tests as coevidenced from histological findings of the liver, pancreas, and kidney. TCME remarkably reinstated the antioxidant enzymatic activities (CAT: 0.181 ± 0.011 IU/mg protein, SOD: 21.45 ± 1.53 IU/mg protein) and reduced lipid peroxidation level (40.60 ± 2.41 µM/mg protein) in the liver and kidney tissue of diabetic rats at 750 mg/kg dose. The acute and subacute oral toxicity study of TCME exhibited no clinical toxicity signs and mortality. Its GC-MS spectrum unveiled the existence of 10-octadecenoic acid and other compounds which might have contributed to antidiabetic potential.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"56-69"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2021.1963783","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The current research was aimed to evaluate the antidiabetic activity of Terminalia citrina methanolic extract (TCME) by streptozotocin-induced diabetes in male Wistar rats. TCME exhibited better in-vitro antioxidant and alpha-amylase inhibitory activity as compared to other tested extracts. TCME at 250, 500, and 750 mg/kg showed notable (p < .05) antidiabetic potential by lowering fasting blood glucose level, restoring lipid level, serum amylase, HbA1c, kidney, and liver function tests as coevidenced from histological findings of the liver, pancreas, and kidney. TCME remarkably reinstated the antioxidant enzymatic activities (CAT: 0.181 ± 0.011 IU/mg protein, SOD: 21.45 ± 1.53 IU/mg protein) and reduced lipid peroxidation level (40.60 ± 2.41 µM/mg protein) in the liver and kidney tissue of diabetic rats at 750 mg/kg dose. The acute and subacute oral toxicity study of TCME exhibited no clinical toxicity signs and mortality. Its GC-MS spectrum unveiled the existence of 10-octadecenoic acid and other compounds which might have contributed to antidiabetic potential.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.