Muhammad Waseem, Mehtab Muhammad Aslam, Iffat Shaheen
{"title":"The DUF221 domain-containing (DDP) genes identification and expression analysis in tomato under abiotic and phytohormone stress.","authors":"Muhammad Waseem, Mehtab Muhammad Aslam, Iffat Shaheen","doi":"10.1080/21645698.2021.1962207","DOIUrl":null,"url":null,"abstract":"<p><p>The domain of unknown function (DUF221 domain-containing) proteins regulates various aspects of plant growth, development, responses to abiotic stresses, and hormone transduction pathways. To understand the role of DDP proteins in tomato, a comprehensive genome-wide analysis was performed in the tomato genome. A total of 12 DDP genes were identified and distributed in 8 chromosomes in the tomato genome. Phylogenetically all SlDDPs were clustered into four clades, subsequently supported by their gene structure and conserved motifs distribution. The SlDDPs contained various cis-acting elements involved in plant responses to abiotic and various phytohormones stresses. The tissue-specific expression profile analysis revealed the constitutive expression of <i>SlDDPs</i> in roots, leaves, and developmental phases of fruit. It was found that <i>SlDDP1, SlDDP3, SlDDP4, SlDDP9, SlDDP10</i>, and <i>SlDDP12</i> exhibited high expression levels in fruits at different development stages. Of these genes, <i>SlDDP12</i> contained ethylene (ERE) responsive elements in their promoter regions, suggesting its role in ethylene-dependent fruit ripening. It was found that a single SlDDP induced by two or more abiotic and phytohormone stresses. These include, <i>SlDDP1, SlDDP2, SlDDP3, SlDDP4, SlDDP7, SlDDP8</i>, and <i>SlDDP10</i> was induced under salt, drought, ABA, and IAA stresses. Moreover, tomato SlDDPs were targeted by multiple miRNA gene families as well. In conclusion, this study predicted that the putative DDP genes might help improve abiotic and phytohormone tolerance in plants, particularly tomato, rice, and other economically important crop plant species.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"586-599"},"PeriodicalIF":4.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820248/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2021.1962207","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
The domain of unknown function (DUF221 domain-containing) proteins regulates various aspects of plant growth, development, responses to abiotic stresses, and hormone transduction pathways. To understand the role of DDP proteins in tomato, a comprehensive genome-wide analysis was performed in the tomato genome. A total of 12 DDP genes were identified and distributed in 8 chromosomes in the tomato genome. Phylogenetically all SlDDPs were clustered into four clades, subsequently supported by their gene structure and conserved motifs distribution. The SlDDPs contained various cis-acting elements involved in plant responses to abiotic and various phytohormones stresses. The tissue-specific expression profile analysis revealed the constitutive expression of SlDDPs in roots, leaves, and developmental phases of fruit. It was found that SlDDP1, SlDDP3, SlDDP4, SlDDP9, SlDDP10, and SlDDP12 exhibited high expression levels in fruits at different development stages. Of these genes, SlDDP12 contained ethylene (ERE) responsive elements in their promoter regions, suggesting its role in ethylene-dependent fruit ripening. It was found that a single SlDDP induced by two or more abiotic and phytohormone stresses. These include, SlDDP1, SlDDP2, SlDDP3, SlDDP4, SlDDP7, SlDDP8, and SlDDP10 was induced under salt, drought, ABA, and IAA stresses. Moreover, tomato SlDDPs were targeted by multiple miRNA gene families as well. In conclusion, this study predicted that the putative DDP genes might help improve abiotic and phytohormone tolerance in plants, particularly tomato, rice, and other economically important crop plant species.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments