mfapy: An open-source Python package for 13C-based metabolic flux analysis

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Fumio Matsuda, Kousuke Maeda, Takeo Taniguchi, Yuya Kondo, Futa Yatabe, Nobuyuki Okahashi, Hiroshi Shimizu
{"title":"mfapy: An open-source Python package for 13C-based metabolic flux analysis","authors":"Fumio Matsuda,&nbsp;Kousuke Maeda,&nbsp;Takeo Taniguchi,&nbsp;Yuya Kondo,&nbsp;Futa Yatabe,&nbsp;Nobuyuki Okahashi,&nbsp;Hiroshi Shimizu","doi":"10.1016/j.mec.2021.e00177","DOIUrl":null,"url":null,"abstract":"<div><p><sup>13</sup>C-based metabolic flux analysis (<sup>13</sup>C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In <sup>13</sup>C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for <sup>13</sup>C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of <sup>13</sup>C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (<span>https://github.com/fumiomatsuda/mfapy</span><svg><path></path></svg>).</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00177","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030121000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

13C-based metabolic flux analysis (13C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In 13C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for 13C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of 13C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (https://github.com/fumiomatsuda/mfapy).

Abstract Image

Abstract Image

Abstract Image

mfapy:一个开源Python包,用于基于13c的代谢通量分析
基于13c的代谢通量分析(13C-MFA)是代谢工程和生物学中估计细胞内代谢通量水平的重要工具。在13C-MFA中,使用非线性优化方法计算估计了解释观测到的同位素标记数据的代谢通量分布。在此,我们报告了mfapy的开发,这是一个开源Python包,旨在为13C-MFA提供更大的灵活性和可扩展性。mfapy通过描述同位素标记实验数据分析过程中的每个步骤,迫使用户编写自定义Python代码。mfapy提供的灵活性和可扩展性可以支持常规代谢通量分布估计的试错性能,通过13C-MFA实验的计算机模拟实验设计,以及稳定同位素标记实验的新数据分析技术的开发。公众可以从Github存储库(https://github.com/fumiomatsuda/mfapy)获得mfapy。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信