Spatiotemporal patterns in differences between the 137Cs concentrations of forest and stream litters: effect of leaching†

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Masaru Sakai, Mitsuru Ohira and Takashi Gomi
{"title":"Spatiotemporal patterns in differences between the 137Cs concentrations of forest and stream litters: effect of leaching†","authors":"Masaru Sakai, Mitsuru Ohira and Takashi Gomi","doi":"10.1039/D3EM00236E","DOIUrl":null,"url":null,"abstract":"<p >Forest–stream ecotones possess prominent detritus-based food webs, and <small><sup>137</sup></small>Cs-contaminated litter can influence the contamination levels of animals inhabiting such ecosystems. The effects of leaching on contaminated litter induce greater absolute differences between the <small><sup>137</sup></small>Cs concentrations of forest and stream litter in more contaminated sites. Because <small><sup>137</sup></small>Cs concentrations in litter can be attenuated temporally, spatiotemporal patterns in the differences in <small><sup>137</sup></small>Cs concentrations between forest and stream litter may vary depending on both the amount of <small><sup>137</sup></small>Cs deposition and the passage of time. To test this hypothesis, we sampled coniferous needle and broad-leaved deciduous litter in forests and streams at seven forested headwater sites affected by the Fukushima nuclear accident 3.24 and 11.24 years after the accident. We found that <small><sup>137</sup></small>Cs concentrations in the two litter types were one order of magnitude lower 11.24 years after the accident than 3.24 years afterwards. The absolute difference in <small><sup>137</sup></small>Cs activity concentrations of litter between forest and stream ecosystems was higher at more contaminated sites both 3.24 and 11.24 years after the accident. The spatiotemporal changes in litter contamination provide insight into <small><sup>137</sup></small>Cs dynamics and complex transfer in the detritus-based food webs of forest–stream ecotones.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 8","pages":" 1385-1390"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/em/d3em00236e","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Forest–stream ecotones possess prominent detritus-based food webs, and 137Cs-contaminated litter can influence the contamination levels of animals inhabiting such ecosystems. The effects of leaching on contaminated litter induce greater absolute differences between the 137Cs concentrations of forest and stream litter in more contaminated sites. Because 137Cs concentrations in litter can be attenuated temporally, spatiotemporal patterns in the differences in 137Cs concentrations between forest and stream litter may vary depending on both the amount of 137Cs deposition and the passage of time. To test this hypothesis, we sampled coniferous needle and broad-leaved deciduous litter in forests and streams at seven forested headwater sites affected by the Fukushima nuclear accident 3.24 and 11.24 years after the accident. We found that 137Cs concentrations in the two litter types were one order of magnitude lower 11.24 years after the accident than 3.24 years afterwards. The absolute difference in 137Cs activity concentrations of litter between forest and stream ecosystems was higher at more contaminated sites both 3.24 and 11.24 years after the accident. The spatiotemporal changes in litter contamination provide insight into 137Cs dynamics and complex transfer in the detritus-based food webs of forest–stream ecotones.

Abstract Image

森林和河流凋落物137Cs浓度差异的时空格局:淋滤效应
森林-溪流过渡带具有突出的以碎屑为基础的食物网,受137cs污染的凋落物可以影响居住在这种生态系统中的动物的污染水平。淋滤对污染凋落物的影响导致在污染程度较高的地点,森林凋落物和河流凋落物的137Cs浓度存在较大的绝对差异。由于凋落物中137Cs浓度随时间的变化而衰减,因此森林凋落物和河流凋落物中137Cs浓度差异的时空格局可能随137Cs的沉积量和时间的变化而变化。为了验证这一假设,我们在福岛核事故发生后的3.24年和11.24年,对7个受福岛核事故影响的森林源头点的森林和溪流中的针叶和阔叶落叶凋落物进行了采样。两种凋落物类型的137Cs浓度在事故发生后11.24年比事故发生后3.24年低一个数量级。在事故发生后的3.24年和11.24年,森林生态系统和河流生态系统凋落物中137Cs活性浓度的绝对差异在污染越严重的地点越大。凋落物污染的时空变化为揭示森林-河流过渡带碎屑食物网中137Cs的动态和复杂转移提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信