Yuhua Zhong, Jianzhong Fan, Huijuan Wang, Renhong He
{"title":"Simultaneously stimulating both brain hemispheres by rTMS in patients with unilateral brain lesions decreases interhemispheric asymmetry.","authors":"Yuhua Zhong, Jianzhong Fan, Huijuan Wang, Renhong He","doi":"10.3233/RNN-211172","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interhemispheric asymmetry caused by brain lesions is an adverse factor in the recovery of patients with neurological deficits. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate cortical oscillation and proposed as an approach to rebalance the symmetry, which has not been documented well.</p><p><strong>Objective: </strong>In this study, we investigated the influence of repetitive transcranial magnetic stimulation (rTMS) on EEG power in patients with unilateral brain lesions by simultaneously stimulating both brain hemispheres and to elucidate asymmetrical changes in rTMS-induced neurophysiological activity.</p><p><strong>Methods: </strong>Fourteen patients with unilateral brain lesions were treated with one active and one sham session of 10 Hz rTMS over the vertex (Cz position). Resting-state EEGs were recorded before and immediately after rTMS. The brain symmetry index (BSI), calculated from a fast Fourier transform, was employed to quantify the power asymmetry in both hemispheres and paired channels over the entire range and five frequency bands (delta, theta, alpha, beta and gamma bands).</p><p><strong>Results: </strong>Comparison between active and sham sessions demonstrated rTMS-induced EEG after-effects. rTMS in the active session significantly reduced the BSI in patients with unilateral brain lesions over the entire frequency range (t = 2.767, P = 0.016). Among the five frequency bands, rTMS only induced a noticeable decrease in the BSI in the delta band (t = 2.254, P = 0.042). Furthermore, analysis of different brain regions showed that significant changes in the BSI of the alpha band were only demonstrated in the posterior parietal lobe. In addition, EEG topographic mapping showed a decreased power of delta oscillations in the ipsilesional hemisphere, whereas distinct cortical oscillations were observed in the alpha band around the parietal-occipital lobe in the contralesional hemisphere.</p><p><strong>Conclusions: </strong>When both brain hemispheres were simultaneously activated, rTMS decreased interhemispheric asymmetry primarily via reducing the delta band in the lesioned hemisphere.</p>","PeriodicalId":21130,"journal":{"name":"Restorative neurology and neuroscience","volume":"39 6","pages":"409-418"},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/RNN-211172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restorative neurology and neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/RNN-211172","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Interhemispheric asymmetry caused by brain lesions is an adverse factor in the recovery of patients with neurological deficits. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate cortical oscillation and proposed as an approach to rebalance the symmetry, which has not been documented well.
Objective: In this study, we investigated the influence of repetitive transcranial magnetic stimulation (rTMS) on EEG power in patients with unilateral brain lesions by simultaneously stimulating both brain hemispheres and to elucidate asymmetrical changes in rTMS-induced neurophysiological activity.
Methods: Fourteen patients with unilateral brain lesions were treated with one active and one sham session of 10 Hz rTMS over the vertex (Cz position). Resting-state EEGs were recorded before and immediately after rTMS. The brain symmetry index (BSI), calculated from a fast Fourier transform, was employed to quantify the power asymmetry in both hemispheres and paired channels over the entire range and five frequency bands (delta, theta, alpha, beta and gamma bands).
Results: Comparison between active and sham sessions demonstrated rTMS-induced EEG after-effects. rTMS in the active session significantly reduced the BSI in patients with unilateral brain lesions over the entire frequency range (t = 2.767, P = 0.016). Among the five frequency bands, rTMS only induced a noticeable decrease in the BSI in the delta band (t = 2.254, P = 0.042). Furthermore, analysis of different brain regions showed that significant changes in the BSI of the alpha band were only demonstrated in the posterior parietal lobe. In addition, EEG topographic mapping showed a decreased power of delta oscillations in the ipsilesional hemisphere, whereas distinct cortical oscillations were observed in the alpha band around the parietal-occipital lobe in the contralesional hemisphere.
Conclusions: When both brain hemispheres were simultaneously activated, rTMS decreased interhemispheric asymmetry primarily via reducing the delta band in the lesioned hemisphere.
期刊介绍:
This interdisciplinary journal publishes papers relating to the plasticity and response of the nervous system to accidental or experimental injuries and their interventions, transplantation, neurodegenerative disorders and experimental strategies to improve regeneration or functional recovery and rehabilitation. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance and interest to a multidisciplinary audience. Experiments on un-anesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind peer review to editorial board members or outside reviewers. Restorative Neurology and Neuroscience is a member of Neuroscience Peer Review Consortium.