{"title":"Statistical genetics and polygenic risk score for precision medicine.","authors":"Takahiro Konuma, Yukinori Okada","doi":"10.1186/s41232-021-00172-9","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of disease risks is an essential part of personalized medicine, which includes early disease detection, prevention, and intervention. The polygenic risk score (PRS) has become the standard for quantifying genetic liability in predicting disease risks. PRS utilizes single-nucleotide polymorphisms (SNPs) with genetic risks elucidated by genome-wide association studies (GWASs) and is calculated as weighted sum scores of these SNPs with genetic risks using their effect sizes from GWASs as their weights. The utilities of PRS have been explored in many common diseases, such as cancer, coronary artery disease, obesity, and diabetes, and in various non-disease traits, such as clinical biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of these diseases as a predictive biomarker and provide information on modifiable risk factors driving health outcomes. On the other hand, there are several limitations to implementing PRSs in clinical practice, such as biased sensitivity for the ethnic background of PRS calculation and geographical differences even in the same population groups. Also, it remains unclear which method is the most suitable for the prediction with high accuracy among numerous PRS methods developed so far. Although further improvements of its comprehensiveness and generalizability will be needed for its clinical implementation in the future, PRS will be a powerful tool for therapeutic interventions and lifestyle recommendations in a wide range of diseases. Thus, it may ultimately improve the health of an entire population in the future.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"18"},"PeriodicalIF":5.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41232-021-00172-9","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-021-00172-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 18
Abstract
The prediction of disease risks is an essential part of personalized medicine, which includes early disease detection, prevention, and intervention. The polygenic risk score (PRS) has become the standard for quantifying genetic liability in predicting disease risks. PRS utilizes single-nucleotide polymorphisms (SNPs) with genetic risks elucidated by genome-wide association studies (GWASs) and is calculated as weighted sum scores of these SNPs with genetic risks using their effect sizes from GWASs as their weights. The utilities of PRS have been explored in many common diseases, such as cancer, coronary artery disease, obesity, and diabetes, and in various non-disease traits, such as clinical biomarkers. These applications demonstrated that PRS could identify a high-risk subgroup of these diseases as a predictive biomarker and provide information on modifiable risk factors driving health outcomes. On the other hand, there are several limitations to implementing PRSs in clinical practice, such as biased sensitivity for the ethnic background of PRS calculation and geographical differences even in the same population groups. Also, it remains unclear which method is the most suitable for the prediction with high accuracy among numerous PRS methods developed so far. Although further improvements of its comprehensiveness and generalizability will be needed for its clinical implementation in the future, PRS will be a powerful tool for therapeutic interventions and lifestyle recommendations in a wide range of diseases. Thus, it may ultimately improve the health of an entire population in the future.
期刊介绍:
Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses.
Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.