Machine learning for enzyme engineering, selection and design.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ryan Feehan, Daniel Montezano, Joanna S G Slusky
{"title":"Machine learning for enzyme engineering, selection and design.","authors":"Ryan Feehan,&nbsp;Daniel Montezano,&nbsp;Joanna S G Slusky","doi":"10.1093/protein/gzab019","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning is a useful computational tool for large and complex tasks such as those in the field of enzyme engineering, selection and design. In this review, we examine enzyme-related applications of machine learning. We start by comparing tools that can identify the function of an enzyme and the site responsible for that function. Then we detail methods for optimizing important experimental properties, such as the enzyme environment and enzyme reactants. We describe recent advances in enzyme systems design and enzyme design itself. Throughout we compare and contrast the data and algorithms used for these tasks to illustrate how the algorithms and data can be best used by future designers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299298/pdf/gzab019.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

Abstract

Machine learning is a useful computational tool for large and complex tasks such as those in the field of enzyme engineering, selection and design. In this review, we examine enzyme-related applications of machine learning. We start by comparing tools that can identify the function of an enzyme and the site responsible for that function. Then we detail methods for optimizing important experimental properties, such as the enzyme environment and enzyme reactants. We describe recent advances in enzyme systems design and enzyme design itself. Throughout we compare and contrast the data and algorithms used for these tasks to illustrate how the algorithms and data can be best used by future designers.

酶工程,选择和设计的机器学习。
机器学习是一种有用的计算工具,适用于大型复杂任务,如酶工程、选择和设计领域的任务。在这篇综述中,我们研究了机器学习中与酶相关的应用。我们首先比较可以识别酶功能的工具和负责该功能的位点。然后,我们详细介绍了优化重要实验性质的方法,如酶环境和酶反应物。我们介绍了酶系统设计和酶设计本身的最新进展。在整个过程中,我们对用于这些任务的数据和算法进行了比较和对比,以说明未来的设计师如何最好地使用这些算法和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信