Quantifying throwing load in handball: a method for measuring the number of throws.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-01 Epub Date: 2021-07-23 DOI:10.1080/14763141.2021.1951345
Sebastian Deisting Skejø, Behnam Liaghat, Claes Christian Jakobsen, Merete Møller, Jesper Bencke, Giovanni Papi, Nikolaj Pelle Kunwald, Henrik Sørensen
{"title":"Quantifying throwing load in handball: a method for measuring the number of throws.","authors":"Sebastian Deisting Skejø, Behnam Liaghat, Claes Christian Jakobsen, Merete Møller, Jesper Bencke, Giovanni Papi, Nikolaj Pelle Kunwald, Henrik Sørensen","doi":"10.1080/14763141.2021.1951345","DOIUrl":null,"url":null,"abstract":"<p><p>Shoulder injuries are a common problem in handball. One likely cause of such injuries is excessive throwing. However, it is difficult to measure the number of player throws in large cohort studies using existing methods accurately. Therefore, the purpose of this study is to develop and validate a method for identifying overhead throws using a low-cost inertial measurement unit (IMU) worn on the wrist. In a two-stage approach, we developed a threshold-based automatic identification method for overhead throws in a laboratory study using the IMU. Subsequently, we validated the suggested thresholds in a field setting by comparing throws identified by the threshold-method to throws identified by video recordings of handball practices. The best set of threshold values resulted in a per-player median sensitivity of 100% (range: 84-100%) and a median positive predictive value (PPV) of 96% (range: 86-100%) in the development study. In the validation study, the per-player median sensitivity dropped to 78% sensitivity (range: 52-91%), while the per-player median PPV dropped to 79% (range: 47-90%). The proposed method is a promising method for automatically identifying handball throws in a cheap and feasible way.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1951345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Shoulder injuries are a common problem in handball. One likely cause of such injuries is excessive throwing. However, it is difficult to measure the number of player throws in large cohort studies using existing methods accurately. Therefore, the purpose of this study is to develop and validate a method for identifying overhead throws using a low-cost inertial measurement unit (IMU) worn on the wrist. In a two-stage approach, we developed a threshold-based automatic identification method for overhead throws in a laboratory study using the IMU. Subsequently, we validated the suggested thresholds in a field setting by comparing throws identified by the threshold-method to throws identified by video recordings of handball practices. The best set of threshold values resulted in a per-player median sensitivity of 100% (range: 84-100%) and a median positive predictive value (PPV) of 96% (range: 86-100%) in the development study. In the validation study, the per-player median sensitivity dropped to 78% sensitivity (range: 52-91%), while the per-player median PPV dropped to 79% (range: 47-90%). The proposed method is a promising method for automatically identifying handball throws in a cheap and feasible way.

手球投掷负荷的量化:测量投掷次数的方法。
肩部受伤是手球运动中的常见问题。造成这种损伤的一个可能原因是过度投掷。然而,在大型队列研究中,很难使用现有方法精确测量球员的投掷次数。因此,本研究的目的是利用佩戴在手腕上的低成本惯性测量单元(IMU),开发并验证一种识别高抛的方法。我们分两个阶段,在实验室研究中使用惯性测量单元开发了一种基于阈值的自动识别高抛方法。随后,我们通过比较阈值法识别的投掷和手球练习录像识别的投掷,在现场环境中验证了建议的阈值。在开发研究中,最佳阈值集使每个球员的灵敏度中位数达到 100%(范围:84-100%),阳性预测值(PPV)中位数达到 96%(范围:86-100%)。在验证研究中,每个玩家的灵敏度中值下降到 78%(范围:52-91%),而每个玩家的 PPV 中值下降到 79%(范围:47-90%)。所提出的方法是一种廉价、可行的手球投掷自动识别方法,前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信