Marina Yurievna Maksimova, Alexander Vladimirovich Ivanov, Edward Danielevich Virus, Ksenya Alexandrovna Nikiforova, Fatima Ramazanovna Ochtova, Ekaterina Taymurazovna Suanova, Maria Petrovna Kruglova, Mikhail Aleksanrovich Piradov, Aslan Amirkhanovich Kubatiev
{"title":"Impact of glutathione on acute ischemic stroke severity and outcome: possible role of aminothiols redox status.","authors":"Marina Yurievna Maksimova, Alexander Vladimirovich Ivanov, Edward Danielevich Virus, Ksenya Alexandrovna Nikiforova, Fatima Ramazanovna Ochtova, Ekaterina Taymurazovna Suanova, Maria Petrovna Kruglova, Mikhail Aleksanrovich Piradov, Aslan Amirkhanovich Kubatiev","doi":"10.1080/13510002.2021.1952819","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Acute brain ischemia is accompanied by a disruption of low-molecular-weight aminothiols (LMWTs) homeostasis, such as homocysteine (Hcy), cysteine (Cys), and glutathione (GSH). We investigated the redox balance of LMWTs in blood plasma and its influence on ischemic stroke severity and the functional outcome in patients with an acute period.</p><p><strong>Patients and methods: </strong>A total of 177 patients were examined. Total and reduced forms of LMWTs were determined in the first 10-24 h. Stroke severity and functional state were estimated using the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRs) at admission and after 21 days.</p><p><strong>Results: </strong>Patients with high levels of total Hcy (> 19 μM) showed significantly reduced redox statuses of all LMWTs. Patients with low total GSH levels (≤ 1.07 μM) were at an increased risk of higher stroke severity (NIHSS > 10) compared to patients with a total GSH level > 2.64 μM (age/gender-adjusted odds ratio: 4.69, 95% CI: 1.43-15.4).</p><p><strong>Discussion: </strong>(1) low total GSH level can be considered as a novel risk marker for the severity of acute stroke in conditions of low redox status of LMWTs and (2) high Hcy levels associated with low redox status of LMWTs.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"26 1","pages":"117-123"},"PeriodicalIF":5.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13510002.2021.1952819","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2021.1952819","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Objective: Acute brain ischemia is accompanied by a disruption of low-molecular-weight aminothiols (LMWTs) homeostasis, such as homocysteine (Hcy), cysteine (Cys), and glutathione (GSH). We investigated the redox balance of LMWTs in blood plasma and its influence on ischemic stroke severity and the functional outcome in patients with an acute period.
Patients and methods: A total of 177 patients were examined. Total and reduced forms of LMWTs were determined in the first 10-24 h. Stroke severity and functional state were estimated using the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRs) at admission and after 21 days.
Results: Patients with high levels of total Hcy (> 19 μM) showed significantly reduced redox statuses of all LMWTs. Patients with low total GSH levels (≤ 1.07 μM) were at an increased risk of higher stroke severity (NIHSS > 10) compared to patients with a total GSH level > 2.64 μM (age/gender-adjusted odds ratio: 4.69, 95% CI: 1.43-15.4).
Discussion: (1) low total GSH level can be considered as a novel risk marker for the severity of acute stroke in conditions of low redox status of LMWTs and (2) high Hcy levels associated with low redox status of LMWTs.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.