Majid Mostaghelchi, Mohammad Zendehbad, Christian L Lengauer
{"title":"Small Hematite Nanoparticles from the Kiruna-Type Ore; Evaluation of Declined Balance Limit of the Attrition Process and Their Catalytic Properties.","authors":"Majid Mostaghelchi, Mohammad Zendehbad, Christian L Lengauer","doi":"10.1166/jnn.2021.19502","DOIUrl":null,"url":null,"abstract":"<p><p>Hematite nanoparticles possess unique properties which have motivated substantial attention for numerous applications, including environmental remediation and wastewater treatment as a promising novel technology. The magnetite-silicate raw material of Kiruna-type ore has been introduced as an innovative precursor, decreasing the attrition balance limit for large-scale production of the ball-mill-derived hematite nanoparticles below the critical size. In this study, the hypothesis and the postulated role of quartz in the effective size reduction process were further investigated. The prepared samples were characterized in detail via X-ray fluorescence (XRF) and powder X-ray diffractometry (pXRD) to be compared with the previous results. Furthermore, the catalytic and photocatalytic activities of the obtained nanoparticles were evaluated in the oxidation reaction of a common persistent sulfo-organic contaminant. The results exposed outstanding reactivity, particularly in their photocatalytic performance, suggesting them as a strong oxidizing agent and active photocatalyst, which greatly promises many possible applications including water and environmental remediation.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6000-6006"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Hematite nanoparticles possess unique properties which have motivated substantial attention for numerous applications, including environmental remediation and wastewater treatment as a promising novel technology. The magnetite-silicate raw material of Kiruna-type ore has been introduced as an innovative precursor, decreasing the attrition balance limit for large-scale production of the ball-mill-derived hematite nanoparticles below the critical size. In this study, the hypothesis and the postulated role of quartz in the effective size reduction process were further investigated. The prepared samples were characterized in detail via X-ray fluorescence (XRF) and powder X-ray diffractometry (pXRD) to be compared with the previous results. Furthermore, the catalytic and photocatalytic activities of the obtained nanoparticles were evaluated in the oxidation reaction of a common persistent sulfo-organic contaminant. The results exposed outstanding reactivity, particularly in their photocatalytic performance, suggesting them as a strong oxidizing agent and active photocatalyst, which greatly promises many possible applications including water and environmental remediation.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.