Alberto Marin-Gonzalez, J G Vilhena, Ruben Perez, Fernando Moreno-Herrero
{"title":"A molecular view of DNA flexibility.","authors":"Alberto Marin-Gonzalez, J G Vilhena, Ruben Perez, Fernando Moreno-Herrero","doi":"10.1017/S0033583521000068","DOIUrl":null,"url":null,"abstract":"<p><p>DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general 'rules' that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"54 ","pages":"e8"},"PeriodicalIF":7.2000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583521000068","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583521000068","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 19
Abstract
DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general 'rules' that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.