Theoretical fractional formulation of a three-dimensional radio frequency ion trap (Paul-trap) for optimum mass separation.

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
European Journal of Mass Spectrometry Pub Date : 2021-04-01 Epub Date: 2021-07-04 DOI:10.1177/14690667211026790
Sarkhosh Seddighi Chaharborj, Shahriar Seddighi Chaharborj, Zahra Seddighi Chaharborj, Pei See Phang
{"title":"Theoretical fractional formulation of a three-dimensional radio frequency ion trap (Paul-trap) for optimum mass separation.","authors":"Sarkhosh Seddighi Chaharborj,&nbsp;Shahriar Seddighi Chaharborj,&nbsp;Zahra Seddighi Chaharborj,&nbsp;Pei See Phang","doi":"10.1177/14690667211026790","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the dynamics of an ion confined in a Paul-trap supplied by a fractional periodic impulsional potential. The Cantor-type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from cantorian-coordinate systems to Cantor-type cylindrical coordinate systems. By applying this method to the classical Laplace equation, a fractional Laplace equation in the Cantor-type cylindrical coordinate is obtained. The fractional Laplace equation is solved in the Cantor-type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a Paul-trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions, ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is investigated and discussed.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/14690667211026790","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667211026790","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the dynamics of an ion confined in a Paul-trap supplied by a fractional periodic impulsional potential. The Cantor-type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from cantorian-coordinate systems to Cantor-type cylindrical coordinate systems. By applying this method to the classical Laplace equation, a fractional Laplace equation in the Cantor-type cylindrical coordinate is obtained. The fractional Laplace equation is solved in the Cantor-type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a Paul-trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions, ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is investigated and discussed.

Abstract Image

Abstract Image

Abstract Image

用于最佳质量分离的三维射频离子阱(保罗阱)的理论分数公式。
我们研究了由分数周期脉冲势提供的保罗阱中离子的动力学。康托尔型柱坐标法是将康托尔集上的微分方程从康托尔坐标系转换为康托尔型柱坐标系的有力工具。将该方法应用于经典拉普拉斯方程,得到了cantor型柱坐标下的分数阶拉普拉斯方程。在康托尔柱面坐标系下求解分数阶拉普拉斯方程,然后对分数阶电位paul阱内的受限离子进行了模拟和研究。此外,还研究和讨论了分数参数对稳定区、离子轨迹、相空间、最大俘获电压、两个信号间距和分数分辨率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信