{"title":"Preparation and Characterization of Carborane Modified Liquid Fluoroelastomers and the investigation of their properties.","authors":"Juan Li","doi":"10.1080/15685551.2021.1935014","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of liquid fluoroelastomers that are liquid with excellent mechanical properties remains a challenge. Here, we show a very straightforward method to produce liquid fluoroelastomers by introducing carborane. Carborane-terminated liquid fluoropolymer was synthesized by Steglich reaction of carboxyl-terminated liquid fluoropolymer and 1,7-bis (hydroxy)-carborane. The product is brown, viscous at room temperature and in the semi-solid state. On this basis, HDI Trimer was used as a curing agent to cure liquid fluoroelastomer. Thermogravimetric analysis of the cured products was carried out. The carbon residue rate of the cured product increased from 35% to 58% of the cured product. The results show that the addition of carborane structure can effectively improve the carbon residue rate of liquid fluoroelastomer. The tensile strength, elongation and shore hardness of the cured product were also examined, and the results show that the tensile strength of carborane modified liquid fluorine increased by 463% compared with that before modification, but the elongation at break was reduced by 42%, which was mainly due to the introduction of rigid structure of carborane. At the same time, the solvent resistance test results show that the introduction of carborane structure has little effect on the aviation kerosene resistance and organic solvent resistance of fluororubber, but it can improve its alkali resistance.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2021.1935014","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2021.1935014","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The preparation of liquid fluoroelastomers that are liquid with excellent mechanical properties remains a challenge. Here, we show a very straightforward method to produce liquid fluoroelastomers by introducing carborane. Carborane-terminated liquid fluoropolymer was synthesized by Steglich reaction of carboxyl-terminated liquid fluoropolymer and 1,7-bis (hydroxy)-carborane. The product is brown, viscous at room temperature and in the semi-solid state. On this basis, HDI Trimer was used as a curing agent to cure liquid fluoroelastomer. Thermogravimetric analysis of the cured products was carried out. The carbon residue rate of the cured product increased from 35% to 58% of the cured product. The results show that the addition of carborane structure can effectively improve the carbon residue rate of liquid fluoroelastomer. The tensile strength, elongation and shore hardness of the cured product were also examined, and the results show that the tensile strength of carborane modified liquid fluorine increased by 463% compared with that before modification, but the elongation at break was reduced by 42%, which was mainly due to the introduction of rigid structure of carborane. At the same time, the solvent resistance test results show that the introduction of carborane structure has little effect on the aviation kerosene resistance and organic solvent resistance of fluororubber, but it can improve its alkali resistance.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications