Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kalhara R Menikdiwela, João Pedro Tôrres Guimarães, Latha Ramalingam, Nishan S Kalupahana, Jannette M Dufour, Rachel L Washburn, Naima Moustaid-Moussa
{"title":"Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity.","authors":"Kalhara R Menikdiwela,&nbsp;João Pedro Tôrres Guimarães,&nbsp;Latha Ramalingam,&nbsp;Nishan S Kalupahana,&nbsp;Jannette M Dufour,&nbsp;Rachel L Washburn,&nbsp;Naima Moustaid-Moussa","doi":"10.1080/10409238.2021.1925219","DOIUrl":null,"url":null,"abstract":"<p><p>Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"455-481"},"PeriodicalIF":6.2000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2021.1925219","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2021.1925219","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 15

Abstract

Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.

肥胖症中内质网应激和microrna与脂肪组织功能障碍的联系机制
脂肪组织中脂质的过度积累通过影响细胞过程破坏代谢稳态。内质网应激就是受肥胖影响的一个过程。肥胖引起的脂肪组织生化和生理改变干扰脂肪内质网功能,引起内质网应激。这与其他细胞过程(如炎症和自噬)的不规则性增加一致,影响脂肪细胞内的整体代谢完整性。此外,可以转录后调控基因的microRNAs (miRNAs)在肥胖中受到差异调节。更好地了解和鉴定这些mirna可以作为新的治疗靶点来对抗疾病。在这篇综述中,我们讨论了内质网应激作为一个共同的分子过程参与肥胖相关代谢紊乱的发病机制。此外,我们的综述详细讨论了内质网应激和mirna促进肥胖脂肪组织代谢改变的潜在机制。因此,确定mirna -内质网应激串扰在肥胖期间调节脂肪功能的机制参与可能被用作对抗包括肥胖在内的慢性疾病的潜在治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信