Chen-Yu Sung, Pai-Kai Chiang, Che-Wen Tsai, Feng-Yi Yang
{"title":"Low-Intensity Pulsed Ultrasound Enhances Neurotrophic Factors and Alleviates Neuroinflammation in a Rat Model of Parkinson's Disease.","authors":"Chen-Yu Sung, Pai-Kai Chiang, Che-Wen Tsai, Feng-Yi Yang","doi":"10.1093/cercor/bhab201","DOIUrl":null,"url":null,"abstract":"<p><p>Low-intensity pulsed ultrasound (LIPUS) has also been reported to improve behavioral functions in Parkinson's disease (PD) animal models; however, the effect of LIPUS stimulation on the neurotrophic factors and neuroinflammation has not yet been addressed. PD rat model was built by injection of 6-hydroxydopamine (6-OHDA) in 2 sites in the right striatum. The levels of neurotrophic factors and lipocalin-2 (LCN2)-induced neuroinflammation were quantified using a western blot. Rotational test and cylinder test were conducted biweekly for 8 weeks. When the 6-OHDA + LIPUS and 6-OHDA groups were compared, the locomotor function of the 6-OHDA + LIPUS rats was significantly improved. After LIPUS stimulation, the tyrosine hydroxylase staining density was significantly increased in the striatum and substantia nigra pars compacta (SNpc) of lesioned rats. Unilateral LIPUS stimulation did not increase brain-derived neurotrophic factor in the striatum and SNpc of lesioned rats. In contrast, unilateral LIPUS stimulation increased glial cell line-derived neurotrophic factor (GDNF) protein 1.98-fold unilaterally in the SNpc. Additionally, LCN2-induced neuroinflammation can be attenuated following LIPUS stimulation. Our data indicated that LIPUS stimulation may be a potential therapeutic tool against PD via enhancement of GDNF level and inhibition of inflammatory responses in the SNpc of the brain.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"32 1","pages":"176-185"},"PeriodicalIF":2.9000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhab201","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 14
Abstract
Low-intensity pulsed ultrasound (LIPUS) has also been reported to improve behavioral functions in Parkinson's disease (PD) animal models; however, the effect of LIPUS stimulation on the neurotrophic factors and neuroinflammation has not yet been addressed. PD rat model was built by injection of 6-hydroxydopamine (6-OHDA) in 2 sites in the right striatum. The levels of neurotrophic factors and lipocalin-2 (LCN2)-induced neuroinflammation were quantified using a western blot. Rotational test and cylinder test were conducted biweekly for 8 weeks. When the 6-OHDA + LIPUS and 6-OHDA groups were compared, the locomotor function of the 6-OHDA + LIPUS rats was significantly improved. After LIPUS stimulation, the tyrosine hydroxylase staining density was significantly increased in the striatum and substantia nigra pars compacta (SNpc) of lesioned rats. Unilateral LIPUS stimulation did not increase brain-derived neurotrophic factor in the striatum and SNpc of lesioned rats. In contrast, unilateral LIPUS stimulation increased glial cell line-derived neurotrophic factor (GDNF) protein 1.98-fold unilaterally in the SNpc. Additionally, LCN2-induced neuroinflammation can be attenuated following LIPUS stimulation. Our data indicated that LIPUS stimulation may be a potential therapeutic tool against PD via enhancement of GDNF level and inhibition of inflammatory responses in the SNpc of the brain.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.