{"title":"Identification, characterization, and cloning of a novel aminoacylase, L-pipecolic acid acylase from Pseudomonas species.","authors":"Junji Hayashi, Yoshiaki Ichiki, Akiko Kanda, Kazuyoshi Takagi, Mamoru Wakayama","doi":"10.2323/jgam.2020.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>L-Pipecolic acid is utilized as a vital component of specific chemical compounds, such as immunosuppressive drugs, anticancer reagents, and anesthetic reagents. We isolated and characterized a novel L-aminoacylase, N-acetyl-L-pipecolic acid-specific aminoacylase (LpipACY), from Pseudomonas sp. AK2. The subunit molecular mass of LpipACY was 45 kDa and was assumed to be a homooctamer in solution. The enzyme exhibited high substrate specificity toward N-acetyl-L-pipecolic acid and a high activity for N-acetyl-L-pipecolic acid and N-acetyl-L-proline. This enzyme was stable at a high temperature (60°C for 10 min) and under an alkaline pH (6.0-11.5). The N-terminal and internal amino acid sequences of the purified enzyme were STTANTLILRNG and IMASGGV, respectively. These sequences are highly consistent with those of uncharacterized proteins from Pseudomonas species, such as amidohydrolase and peptidase. We also cloned and overexpressed the gene coding LpipACY in Escherichia coli. Moreover, the recombinant LpipACY exhibited properties similar to native enzyme. Our results suggest that LpipACY is a potential enzyme for the enzymatic synthesis of L-pipecolic acid. This study provides the first description of the enzymatic characterization of L-pipecolic acid specific amino acid acylase.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2020.12.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-Pipecolic acid is utilized as a vital component of specific chemical compounds, such as immunosuppressive drugs, anticancer reagents, and anesthetic reagents. We isolated and characterized a novel L-aminoacylase, N-acetyl-L-pipecolic acid-specific aminoacylase (LpipACY), from Pseudomonas sp. AK2. The subunit molecular mass of LpipACY was 45 kDa and was assumed to be a homooctamer in solution. The enzyme exhibited high substrate specificity toward N-acetyl-L-pipecolic acid and a high activity for N-acetyl-L-pipecolic acid and N-acetyl-L-proline. This enzyme was stable at a high temperature (60°C for 10 min) and under an alkaline pH (6.0-11.5). The N-terminal and internal amino acid sequences of the purified enzyme were STTANTLILRNG and IMASGGV, respectively. These sequences are highly consistent with those of uncharacterized proteins from Pseudomonas species, such as amidohydrolase and peptidase. We also cloned and overexpressed the gene coding LpipACY in Escherichia coli. Moreover, the recombinant LpipACY exhibited properties similar to native enzyme. Our results suggest that LpipACY is a potential enzyme for the enzymatic synthesis of L-pipecolic acid. This study provides the first description of the enzymatic characterization of L-pipecolic acid specific amino acid acylase.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.