{"title":"Effect of melatonin on regeneration of cortical neurons in rats with traumatic brain injury.","authors":"Jianbin Ge, Dandan Chen, Jingjing Ben, Xinjian Song, Linqing Zou, Xin Yi","doi":"10.25011/cim.v43i4.34829","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effect of melatonin on regeneration of cortical neurons in rats with traumatic brain injury (TBI).</p><p><strong>Methods: </strong>Sprague-Dawley rats (n=36) were randomly divided into sham, TBI+vehicle and TBI+melatonin groups. Cerebral blood flow and cognitive function were observed via laser Doppler flowmetry and by Morris water maze testing, respectively. The serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were used to assess oxidative stress. Immunofluorescence and terminal deoxynucleotidyl transferase dUTP nick end labelling assay was used to observe the newborn neurons and apoptotic cells.</p><p><strong>Results: </strong>Cerebral blood flow in the TBI+melatonin group was higher than that of the TBI+vehicle group at one, 12, 24 and 48 h post-injury, but the difference was not statistically significant (P>0.05). The cognitive function of the rats was better in the TBI+melatonin group than the TBI+vehicle group (P.</p>","PeriodicalId":50683,"journal":{"name":"Clinical and Investigative Medicine","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Investigative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.25011/cim.v43i4.34829","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3
Abstract
Purpose: To investigate the effect of melatonin on regeneration of cortical neurons in rats with traumatic brain injury (TBI).
Methods: Sprague-Dawley rats (n=36) were randomly divided into sham, TBI+vehicle and TBI+melatonin groups. Cerebral blood flow and cognitive function were observed via laser Doppler flowmetry and by Morris water maze testing, respectively. The serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were used to assess oxidative stress. Immunofluorescence and terminal deoxynucleotidyl transferase dUTP nick end labelling assay was used to observe the newborn neurons and apoptotic cells.
Results: Cerebral blood flow in the TBI+melatonin group was higher than that of the TBI+vehicle group at one, 12, 24 and 48 h post-injury, but the difference was not statistically significant (P>0.05). The cognitive function of the rats was better in the TBI+melatonin group than the TBI+vehicle group (P.
期刊介绍:
Clinical and Investigative Medicine (CIM), publishes original work in the field of Clinical Investigation. Original work includes clinical or laboratory investigations and clinical reports. Reviews include information for Continuing Medical Education (CME), narrative review articles, systematic reviews, and meta-analyses.