The effects of fatigue on knee kinematics during unanticipated change of direction in adolescent girl athletes: a comparison between dominant and non-dominant legs.
Elham Hosseini, Abdolhamid Daneshjoo, Mansour Sahebozamani, David Behm
{"title":"The effects of fatigue on knee kinematics during unanticipated change of direction in adolescent girl athletes: a comparison between dominant and non-dominant legs.","authors":"Elham Hosseini, Abdolhamid Daneshjoo, Mansour Sahebozamani, David Behm","doi":"10.1080/14763141.2021.1925732","DOIUrl":null,"url":null,"abstract":"<p><p>This study was aimed to compare the knee kinematic parameters between dominant and non-dominant legs of adolescent female athletes during change of direction (CoD) in fatigued and unpredictable settings. Knee kinematic parameters on 49 athletes (mean± SD; age = 14.69 ± 0.14 years; mass = 49.05 ± 1.22 kg; height = 1.61 ± 0.08 m) during CoD before and after performing the Bruce protocol and also in predictable and unpredictable setting situations were collected. Kinematic data were recorded at a sampling rate of 200 Hz. The results showed that the dominant leg had significantly 18.7% more flexion (p = 0.001, η = 0.95), 7.1% less valgus (p = 0.001, η = 0.95) and 0.32% lower tibia rotation (p = 0.003, η = 0.16) compared to the non-dominant leg in predictable and pre-fatigue (p < 0.05) conditions. With unpredictable and post-fatigue conditions the dominant limb again demonstrated 17.4% (p = 0.001, η = 0.67), greater knee flexion, 6.8% (0.003,η = 0.97) lower knee valgus and 1.4% (p = 0.001, η = 0.71) less tibiarotation. In conclusion, there may be an increased risk of injury withthe non-dominant leg due to changes in kinematic parameters caused by fatigue and unpredictable CoD manoeuvres.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1219-1228"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1925732","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study was aimed to compare the knee kinematic parameters between dominant and non-dominant legs of adolescent female athletes during change of direction (CoD) in fatigued and unpredictable settings. Knee kinematic parameters on 49 athletes (mean± SD; age = 14.69 ± 0.14 years; mass = 49.05 ± 1.22 kg; height = 1.61 ± 0.08 m) during CoD before and after performing the Bruce protocol and also in predictable and unpredictable setting situations were collected. Kinematic data were recorded at a sampling rate of 200 Hz. The results showed that the dominant leg had significantly 18.7% more flexion (p = 0.001, η = 0.95), 7.1% less valgus (p = 0.001, η = 0.95) and 0.32% lower tibia rotation (p = 0.003, η = 0.16) compared to the non-dominant leg in predictable and pre-fatigue (p < 0.05) conditions. With unpredictable and post-fatigue conditions the dominant limb again demonstrated 17.4% (p = 0.001, η = 0.67), greater knee flexion, 6.8% (0.003,η = 0.97) lower knee valgus and 1.4% (p = 0.001, η = 0.71) less tibiarotation. In conclusion, there may be an increased risk of injury withthe non-dominant leg due to changes in kinematic parameters caused by fatigue and unpredictable CoD manoeuvres.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.