{"title":"An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data.","authors":"Liya Fu, Zhuoran Yang, Yan Zhou, You-Gan Wang","doi":"10.1007/s10985-021-09526-4","DOIUrl":null,"url":null,"abstract":"<p><p>In medical studies, the collected covariates contain underlying outliers. For clustered/longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to two medical datasets and more reliable and convincing results are hence obtained.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"27 4","pages":"679-709"},"PeriodicalIF":1.2000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10985-021-09526-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09526-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
In medical studies, the collected covariates contain underlying outliers. For clustered/longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to two medical datasets and more reliable and convincing results are hence obtained.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.