An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2021-10-01 Epub Date: 2021-07-02 DOI:10.1007/s10985-021-09526-4
Liya Fu, Zhuoran Yang, Yan Zhou, You-Gan Wang
{"title":"An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data.","authors":"Liya Fu,&nbsp;Zhuoran Yang,&nbsp;Yan Zhou,&nbsp;You-Gan Wang","doi":"10.1007/s10985-021-09526-4","DOIUrl":null,"url":null,"abstract":"<p><p>In medical studies, the collected covariates contain underlying outliers. For clustered/longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to two medical datasets and more reliable and convincing results are hence obtained.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"27 4","pages":"679-709"},"PeriodicalIF":1.2000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10985-021-09526-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09526-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

In medical studies, the collected covariates contain underlying outliers. For clustered/longitudinal data with censored observations, the traditional Gehan-type estimator is robust to outliers in response but sensitive to outliers in the covariate domain, and it also ignores the within-cluster correlations. To take account of within-cluster correlations, varying cluster sizes, and outliers in covariates, we propose weighted Gehan-type estimating functions for parameter estimation in the accelerated failure time model for clustered data. We provide the asymptotic properties of the resulting estimators and carry out simulation studies to evaluate the performance of the proposed method under a variety of realistic settings. The simulation results demonstrate that the proposed method is robust to the outliers existing in the covariate domain and lead to much more efficient estimators when a strong within-cluster correlation exists. Finally, the proposed method is applied to two medical datasets and more reliable and convincing results are hence obtained.

具有聚类和截尾数据的加速失效时间模型的有效gehan型估计。
在医学研究中,收集的协变量包含潜在的异常值。对于具有截尾观测值的聚类/纵向数据,传统的gehan型估计器在响应中对异常值具有鲁棒性,但在协变量域中对异常值敏感,并且忽略了簇内相关性。考虑到簇内相关性、不同的簇大小和协变量中的异常值,我们提出了加权gehan型估计函数,用于聚类数据加速失效时间模型的参数估计。我们提供了所得估计量的渐近性质,并进行了仿真研究,以评估在各种现实设置下提出的方法的性能。仿真结果表明,该方法对协变量域中存在的异常值具有较强的鲁棒性,并且在强簇内相关性存在时,可以得到更有效的估计。最后,将该方法应用于两个医疗数据集,得到了更加可靠和令人信服的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信