Memory in Ion Channel Kinetics

IF 1.4 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
M. P. Silva, C. G. Rodrigues, W. A. Varanda, R. A. Nogueira
{"title":"Memory in Ion Channel Kinetics","authors":"M. P. Silva,&nbsp;C. G. Rodrigues,&nbsp;W. A. Varanda,&nbsp;R. A. Nogueira","doi":"10.1007/s10441-021-09415-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve impulses, hormonal secretion, and heartbeat. Conformational changes in the ion channel-forming protein allow the opening or closing of pores to control the ionic flux through the cell membranes. The opening and closing of the ion channel have been classically treated as a random kinetic process, known as a Markov process. Here the time the channel remains in a given state is assumed to be independent of the condition it had in the previous state. More recently, however, several studies have shown that this process is not random but a deterministic one, where both the open and closed dwell-times and the ionic current flowing through the channel are history-dependent. This property is called long memory or long-range correlation. However, there is still much controversy regarding how this memory originates, which region of the channel is responsible for this property, and which models could best reproduce the memory effect. In this article, we provide a review of what is, where it is, its possible origin, and the mathematical methods used to analyze the long-term memory present in the kinetic process of ion channels.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"69 4","pages":"697 - 722"},"PeriodicalIF":1.4000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-021-09415-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-021-09415-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve impulses, hormonal secretion, and heartbeat. Conformational changes in the ion channel-forming protein allow the opening or closing of pores to control the ionic flux through the cell membranes. The opening and closing of the ion channel have been classically treated as a random kinetic process, known as a Markov process. Here the time the channel remains in a given state is assumed to be independent of the condition it had in the previous state. More recently, however, several studies have shown that this process is not random but a deterministic one, where both the open and closed dwell-times and the ionic current flowing through the channel are history-dependent. This property is called long memory or long-range correlation. However, there is still much controversy regarding how this memory originates, which region of the channel is responsible for this property, and which models could best reproduce the memory effect. In this article, we provide a review of what is, where it is, its possible origin, and the mathematical methods used to analyze the long-term memory present in the kinetic process of ion channels.

Abstract Image

离子通道动力学中的记忆
离子通道是存在于生物膜的脂质双层中的转运蛋白。它们参与许多生理过程,如神经冲动的产生、激素分泌和心跳。离子通道形成蛋白的构象变化允许孔隙的打开或关闭,以控制通过细胞膜的离子通量。离子通道的打开和关闭通常被视为一个随机动力学过程,称为马尔可夫过程。这里,信道保持在给定状态的时间被假设为独立于它在先前状态中的条件。然而,最近的几项研究表明,这一过程不是随机的,而是确定性的,其中打开和关闭的停留时间以及流经通道的离子电流都与历史有关。这种特性称为长内存或长程相关性。然而,关于这种记忆是如何产生的,通道的哪个区域负责这种特性,以及哪些模型可以最好地再现记忆效应,仍然存在很多争议。在这篇文章中,我们回顾了什么是,在哪里,它的可能起源,以及用于分析离子通道动力学过程中存在的长期记忆的数学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biotheoretica
Acta Biotheoretica 生物-生物学
CiteScore
2.70
自引率
7.70%
发文量
19
审稿时长
3 months
期刊介绍: Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory. Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts. Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified. Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信