Conceptual knowledge of the associativity principle: A review of the literature and an agenda for future research

IF 3.4 Q2 NEUROSCIENCES
Joanne Eaves , Camilla Gilmore , Nina Attridge
{"title":"Conceptual knowledge of the associativity principle: A review of the literature and an agenda for future research","authors":"Joanne Eaves ,&nbsp;Camilla Gilmore ,&nbsp;Nina Attridge","doi":"10.1016/j.tine.2021.100152","DOIUrl":null,"url":null,"abstract":"<div><p>Individuals use diverse strategies to solve mathematical problems, which can reflect their knowledge of arithmetic principles and predict mathematical expertise. For example, ‘6 + 38 − 35’ can be solved via ‘38 − 35 = 3’ and then ‘3 + 6 = 9’, which is a shortcut-strategy derived from the associativity principle. The shortcut may be critical for understanding algebra, however approximately 50% of adults fail to use it. We review the research to consider why the associativity principle is challenging and highlight an important distinction between shortcut identification and execution. We also discuss how domain-specific skills and domain-general skills might play an important role in shortcut identification and execution, and provide an agenda for future research.</p></div>","PeriodicalId":46228,"journal":{"name":"Trends in Neuroscience and Education","volume":"23 ","pages":"Article 100152"},"PeriodicalIF":3.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tine.2021.100152","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neuroscience and Education","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211949321000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Individuals use diverse strategies to solve mathematical problems, which can reflect their knowledge of arithmetic principles and predict mathematical expertise. For example, ‘6 + 38 − 35’ can be solved via ‘38 − 35 = 3’ and then ‘3 + 6 = 9’, which is a shortcut-strategy derived from the associativity principle. The shortcut may be critical for understanding algebra, however approximately 50% of adults fail to use it. We review the research to consider why the associativity principle is challenging and highlight an important distinction between shortcut identification and execution. We also discuss how domain-specific skills and domain-general skills might play an important role in shortcut identification and execution, and provide an agenda for future research.

联想原理的概念知识:文献综述及未来研究议程
个体使用不同的策略来解决数学问题,这可以反映他们的算术原理知识和预测数学专业知识。例如,“6 + 38−35”可以通过“38−35 = 3”再“3 + 6 = 9”来求解,这是由结合律原理导出的一种捷径策略。这个捷径对于理解代数可能是至关重要的,然而大约50%的成年人不会使用它。我们回顾研究,以考虑为什么联想原则是具有挑战性的,并强调快捷识别和执行之间的重要区别。我们还讨论了领域特定技能和领域通用技能如何在快速识别和执行中发挥重要作用,并为未来的研究提供了一个议程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
6.10%
发文量
22
审稿时长
65 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信