{"title":"Host lactosylceramide enhances Edwardsiella tarda infection","authors":"Kazuki Oishi, Moeri Morise, Linh Khanh Vo, Nhung Thi Tran, Daichi Sahashi, Rena Ueda-Wakamatsu, Wataru Nishimura, Masaharu Komatsu, Kazuhiro Shiozaki","doi":"10.1111/cmi.13365","DOIUrl":null,"url":null,"abstract":"<p><i>Edwardsiella tarda</i> is a Gram-negative bacterium causing economic damage in aquaculture. The interaction of <i>E. tarda</i> with microdomains is an important step in the invasion, but the target molecules in microdomains remain undefined. Here, we found that intraperitoneal injection of <i>E. tarda</i> altered splenic glycosphingolipid patterns in the model host medaka (<i>Oryzias latipes</i>) accompanied by alteration of glycosphingolipid metabolism-related gene expressions, suggesting that glycosphingolipid levels are involved in <i>E. tarda</i> infection. To ascertain the significance of glycosphingolipids in the infection, fish cell lines, DIT29 cells with a high amount of lactosylceramide (LacCer) and glucosylceramide (GlcCer), and GAKS cells with a low amount of these lipids, were treated with methyl-β-cyclodextrin to disrupt the microdomain. <i>E. tarda</i> infection was suppressed in DIT29 cells, but not in GAKS cells, suggesting the involvement of microdomain LacCer and GlcCer in the infection. DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glycosphingolipid-synthesis, attenuated the infection in DIT29 cells, while Neu3-overexpressing GAKS cells, which accumulated LacCer, enhanced the infection. <i>E. tarda</i> possessed binding ability towards LacCer, but not GlcCer, and LacCer preincubation declined the infection towards fish cells, possibly due to the masking of binding sites. The present study suggests that LacCer may be a positive regulator of <i>E. tarda</i> invasion.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"23 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/cmi.13365","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cmi.13365","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Edwardsiella tarda is a Gram-negative bacterium causing economic damage in aquaculture. The interaction of E. tarda with microdomains is an important step in the invasion, but the target molecules in microdomains remain undefined. Here, we found that intraperitoneal injection of E. tarda altered splenic glycosphingolipid patterns in the model host medaka (Oryzias latipes) accompanied by alteration of glycosphingolipid metabolism-related gene expressions, suggesting that glycosphingolipid levels are involved in E. tarda infection. To ascertain the significance of glycosphingolipids in the infection, fish cell lines, DIT29 cells with a high amount of lactosylceramide (LacCer) and glucosylceramide (GlcCer), and GAKS cells with a low amount of these lipids, were treated with methyl-β-cyclodextrin to disrupt the microdomain. E. tarda infection was suppressed in DIT29 cells, but not in GAKS cells, suggesting the involvement of microdomain LacCer and GlcCer in the infection. DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, an inhibitor of glycosphingolipid-synthesis, attenuated the infection in DIT29 cells, while Neu3-overexpressing GAKS cells, which accumulated LacCer, enhanced the infection. E. tarda possessed binding ability towards LacCer, but not GlcCer, and LacCer preincubation declined the infection towards fish cells, possibly due to the masking of binding sites. The present study suggests that LacCer may be a positive regulator of E. tarda invasion.
期刊介绍:
Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.