Humans in the Loop: Incorporating Expert and Crowd-Sourced Knowledge for Predictions Using Survey Data.

IF 3 Q1 SOCIOLOGY
Socius Pub Date : 2019-01-01 Epub Date: 2019-09-10 DOI:10.1177/2378023118820157
Anna Filippova, Connor Gilroy, Ridhi Kashyap, Antje Kirchner, Allison C Morgan, Kivan Polimis, Adaner Usmani, Tong Wang
{"title":"Humans in the Loop: Incorporating Expert and Crowd-Sourced Knowledge for Predictions Using Survey Data.","authors":"Anna Filippova, Connor Gilroy, Ridhi Kashyap, Antje Kirchner, Allison C Morgan, Kivan Polimis, Adaner Usmani, Tong Wang","doi":"10.1177/2378023118820157","DOIUrl":null,"url":null,"abstract":"<p><p>Survey data sets are often wider than they are long. This high ratio of variables to observations raises concerns about overfitting during prediction, making informed variable selection important. Recent applications in computer science have sought to incorporate human knowledge into machine-learning methods to address these problems. The authors implement such a \"human-in-the-loop\" approach in the Fragile Families Challenge. The authors use surveys to elicit knowledge from experts and laypeople about the importance of different variables to different outcomes. This strategy offers the option to subset the data before prediction or to incorporate human knowledge as scores in prediction models, or both together. The authors find that human intervention is not obviously helpful. Human-informed subsetting reduces predictive performance, and considered alone, approaches incorporating scores perform marginally worse than approaches that do not. However, incorporating human knowledge may still improve predictive performance, and future research should consider new ways of doing so.</p>","PeriodicalId":36345,"journal":{"name":"Socius","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/af/nihms-1686808.PMC8112737.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socius","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2378023118820157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Survey data sets are often wider than they are long. This high ratio of variables to observations raises concerns about overfitting during prediction, making informed variable selection important. Recent applications in computer science have sought to incorporate human knowledge into machine-learning methods to address these problems. The authors implement such a "human-in-the-loop" approach in the Fragile Families Challenge. The authors use surveys to elicit knowledge from experts and laypeople about the importance of different variables to different outcomes. This strategy offers the option to subset the data before prediction or to incorporate human knowledge as scores in prediction models, or both together. The authors find that human intervention is not obviously helpful. Human-informed subsetting reduces predictive performance, and considered alone, approaches incorporating scores perform marginally worse than approaches that do not. However, incorporating human knowledge may still improve predictive performance, and future research should consider new ways of doing so.

Abstract Image

Abstract Image

Abstract Image

循环中的人类:利用调查数据结合专家和众包知识进行预测。
调查数据集的宽度往往大于长度。这种变量与观测值的高比例引起了人们对预测过程中过拟合问题的担忧,因此知情的变量选择非常重要。计算机科学领域的最新应用试图将人类知识融入机器学习方法,以解决这些问题。作者在 "脆弱家庭挑战赛 "中采用了这种 "人在回路中 "的方法。作者利用调查从专家和非专业人士那里了解不同变量对不同结果的重要性。这一策略提供了在预测前对数据进行子集化的选择,或将人类知识作为分数纳入预测模型,或将两者结合起来。作者发现,人工干预并没有明显的帮助。由人类提供信息的数据子集会降低预测性能,而单独考虑时,包含分数的方法比不包含分数的方法性能略差。不过,纳入人类知识仍可提高预测性能,未来的研究应考虑这样做的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Socius
Socius Social Sciences-Social Sciences (all)
CiteScore
5.10
自引率
6.70%
发文量
84
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信