Jengsu Yoo, Soo-Kyung Chang, Gunwoo Jung, Kyuheon Kim, Tae-Soo Kim, Jung-Hoon Song, Ho-Young Cha, Sang-Woo Han
{"title":"Analysis of Thermal Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistors Using Micro-Raman Spectroscopy.","authors":"Jengsu Yoo, Soo-Kyung Chang, Gunwoo Jung, Kyuheon Kim, Tae-Soo Kim, Jung-Hoon Song, Ho-Young Cha, Sang-Woo Han","doi":"10.1166/jnn.2021.19491","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the heat dissipation in heterostructure field-effect transistors (HFETs) using microRaman measurement of the temperature in active AIGaN/GaN. By varying the gate structure, the heat dissipation through the gate was clearly revealed. The temperature increased to 120 °C at the flat gate device although the inserted gate increased to only 37 °C. Our results showed that the inserted gate structure reduced the self-heating effect by three times compared to the flat gate structure. Temperature mapping using micro-Raman measurement confirmed that the temperature of the near gate area was lower than that of the near drain area. This indicated that the inserted gate electrode structure effectively prohibited self-heating effects.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5736-5741"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We investigated the heat dissipation in heterostructure field-effect transistors (HFETs) using microRaman measurement of the temperature in active AIGaN/GaN. By varying the gate structure, the heat dissipation through the gate was clearly revealed. The temperature increased to 120 °C at the flat gate device although the inserted gate increased to only 37 °C. Our results showed that the inserted gate structure reduced the self-heating effect by three times compared to the flat gate structure. Temperature mapping using micro-Raman measurement confirmed that the temperature of the near gate area was lower than that of the near drain area. This indicated that the inserted gate electrode structure effectively prohibited self-heating effects.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.