John R Harry, Leland A Barker, Grant M Tinsley, John Krzyszkowski, Luke D Chowning, John J McMahon, Jason Lake
{"title":"Relationships among countermovement vertical jump performance metrics, strategy variables, and inter-limb asymmetry in females.","authors":"John R Harry, Leland A Barker, Grant M Tinsley, John Krzyszkowski, Luke D Chowning, John J McMahon, Jason Lake","doi":"10.1080/14763141.2021.1908412","DOIUrl":null,"url":null,"abstract":"<p><p>Dependent variables commonly studied during countermovement vertical jump (CMVJ) tests largely stem from male-only studies despite females'distinct energy storage and reutilisation strategies. This could limit progress among females seeking increased CMVJ performance through targeted changes in certain variables. We explored relationships between CMVJ performance metrics (jump height, modified reactive strength index, jump power, and takeoff momentum) and (a) temporal and force application variables and (b) inter-limb force and yank (i.e., rate of force development) asymmetry in 31 recreationally active females. Participants performed eight CMVJs while ground reaction force (GRF) data were obtained. Pearson product-moment correlation coefficients assessed the strength and direction of the associations. Twenty-six significant relationships (r ≥ ±0.357; p < 0.05) were detected across the CMVJ performance variables. The significantly correlated variables were generally isolated to only one of the four performance metrics. Only the percentage of concentric phase inter-limb force asymmetry was significantly associated with CMVJ performance, specifically jump power and takeoff momentum. Coaches and physical performance professionals should be aware of popular strategy variables' association or lack of association with commonly studied performance metrics when seeking to understand or improve specific CMVJ jumping abilities in females.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1009-1027"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1908412","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dependent variables commonly studied during countermovement vertical jump (CMVJ) tests largely stem from male-only studies despite females'distinct energy storage and reutilisation strategies. This could limit progress among females seeking increased CMVJ performance through targeted changes in certain variables. We explored relationships between CMVJ performance metrics (jump height, modified reactive strength index, jump power, and takeoff momentum) and (a) temporal and force application variables and (b) inter-limb force and yank (i.e., rate of force development) asymmetry in 31 recreationally active females. Participants performed eight CMVJs while ground reaction force (GRF) data were obtained. Pearson product-moment correlation coefficients assessed the strength and direction of the associations. Twenty-six significant relationships (r ≥ ±0.357; p < 0.05) were detected across the CMVJ performance variables. The significantly correlated variables were generally isolated to only one of the four performance metrics. Only the percentage of concentric phase inter-limb force asymmetry was significantly associated with CMVJ performance, specifically jump power and takeoff momentum. Coaches and physical performance professionals should be aware of popular strategy variables' association or lack of association with commonly studied performance metrics when seeking to understand or improve specific CMVJ jumping abilities in females.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.