{"title":"Fisher transformation based confidence intervals of correlations in fixed- and random-effects meta-analysis","authors":"Thilo Welz, Philipp Doebler, Markus Pauly","doi":"10.1111/bmsp.12242","DOIUrl":null,"url":null,"abstract":"<p>Meta-analyses of correlation coefficients are an important technique to integrate results from many cross-sectional and longitudinal research designs. Uncertainty in pooled estimates is typically assessed with the help of confidence intervals, which can double as hypothesis tests for two-sided hypotheses about the underlying correlation. A standard approach to construct confidence intervals for the main effect is the Hedges-Olkin-Vevea Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from previous studies (Field, 2005, <i>Psychol. Meth</i>., 10, 444; Hafdahl and Williams, 2009, <i>Psychol. Meth</i>., 14, 24), however, indicate that in random-effects models the performance of the HOVz confidence interval can be unsatisfactory. To this end, we propose improvements of the HOVz approach, which are based on enhanced variance estimators for the main effect estimate. In order to study the coverage of the new confidence intervals in both fixed- and random-effects meta-analysis models, we perform an extensive simulation study, comparing them to established approaches. Data were generated via a truncated normal and beta distribution model. The results show that our newly proposed confidence intervals based on a Knapp-Hartung-type variance estimator or robust heteroscedasticity consistent sandwich estimators in combination with the integral z-to-r transformation (Hafdahl, 2009, <i>Br. J. Math. Stat. Psychol</i>., 62, 233) provide more accurate coverage than existing approaches in most scenarios, especially in the more appropriate beta distribution simulation model.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12242","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12242","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6
Abstract
Meta-analyses of correlation coefficients are an important technique to integrate results from many cross-sectional and longitudinal research designs. Uncertainty in pooled estimates is typically assessed with the help of confidence intervals, which can double as hypothesis tests for two-sided hypotheses about the underlying correlation. A standard approach to construct confidence intervals for the main effect is the Hedges-Olkin-Vevea Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from previous studies (Field, 2005, Psychol. Meth., 10, 444; Hafdahl and Williams, 2009, Psychol. Meth., 14, 24), however, indicate that in random-effects models the performance of the HOVz confidence interval can be unsatisfactory. To this end, we propose improvements of the HOVz approach, which are based on enhanced variance estimators for the main effect estimate. In order to study the coverage of the new confidence intervals in both fixed- and random-effects meta-analysis models, we perform an extensive simulation study, comparing them to established approaches. Data were generated via a truncated normal and beta distribution model. The results show that our newly proposed confidence intervals based on a Knapp-Hartung-type variance estimator or robust heteroscedasticity consistent sandwich estimators in combination with the integral z-to-r transformation (Hafdahl, 2009, Br. J. Math. Stat. Psychol., 62, 233) provide more accurate coverage than existing approaches in most scenarios, especially in the more appropriate beta distribution simulation model.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.