{"title":"Graph Attention Network with Focal Loss for Seizure Detection on Electroencephalography Signals.","authors":"Yanna Zhao, Gaobo Zhang, Changxu Dong, Qi Yuan, Fangzhou Xu, Yuanjie Zheng","doi":"10.1142/S0129065721500271","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic seizure detection from electroencephalogram (EEG) plays a vital role in accelerating epilepsy diagnosis. Previous researches on seizure detection mainly focused on extracting time-domain and frequency-domain features from single electrodes, while paying little attention to the positional correlations between different EEG channels of the same subject. Moreover, data imbalance is common in seizure detection scenarios where the duration of nonseizure periods is much longer than the duration of seizures. To cope with the two challenges, a novel seizure detection method based on graph attention network (GAT) is presented. The approach acts on graph-structured data and takes the raw EEG data as input. The positional relationship between different EEG signals is exploited by GAT. The loss function of the GAT model is redefined using the focal loss to tackle data imbalance problem. Experiments are conducted on the CHB-MIT dataset. The accuracy, sensitivity and specificity of the proposed method are 98.89[Formula: see text], 97.10[Formula: see text] and 99.63[Formula: see text], respectively.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"31 7","pages":"2150027"},"PeriodicalIF":6.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065721500271","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12
Abstract
Automatic seizure detection from electroencephalogram (EEG) plays a vital role in accelerating epilepsy diagnosis. Previous researches on seizure detection mainly focused on extracting time-domain and frequency-domain features from single electrodes, while paying little attention to the positional correlations between different EEG channels of the same subject. Moreover, data imbalance is common in seizure detection scenarios where the duration of nonseizure periods is much longer than the duration of seizures. To cope with the two challenges, a novel seizure detection method based on graph attention network (GAT) is presented. The approach acts on graph-structured data and takes the raw EEG data as input. The positional relationship between different EEG signals is exploited by GAT. The loss function of the GAT model is redefined using the focal loss to tackle data imbalance problem. Experiments are conducted on the CHB-MIT dataset. The accuracy, sensitivity and specificity of the proposed method are 98.89[Formula: see text], 97.10[Formula: see text] and 99.63[Formula: see text], respectively.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.