Upshot of Concentration of Zirconium (IV) Oxynitrate Hexa Hydrate on Preparation and Analyses of Zirconium Oxide (ZrO₂) Nanoparticles by Modified Co-Precipitation Method.

M Ramachandran, R Subadevi, P Rajkumar, R Muthupradeepa, R Yuvakkumar, M Sivakumar
{"title":"Upshot of Concentration of Zirconium (IV) Oxynitrate Hexa Hydrate on Preparation and Analyses of Zirconium Oxide (ZrO₂) Nanoparticles by Modified Co-Precipitation Method.","authors":"M Ramachandran,&nbsp;R Subadevi,&nbsp;P Rajkumar,&nbsp;R Muthupradeepa,&nbsp;R Yuvakkumar,&nbsp;M Sivakumar","doi":"10.1166/jnn.2021.19488","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, pure nanocrystalline monoclinic Zirconia (ZrO₂) has been successfully synthesized and optimized by the modified co-precipitation method. The concentration of raw material has been optimized with the fixed amount of precipitation agent (Potassium hydroxide KOH). The thermal history of the precursor has been examined through TG/DTA analysis. All the samples are subjected to study the structure, fingerprints of the molecular vibrations, and morphology analyses. The representative sample has been analyzed through Transmission Electron Microscope (TEM) and X-ray Photo Electron Spectroscopy (XPS) analyses. The as-prepared sample exhibits the better crystallinity and surface morphology with lesser particle size (190 nm) when the raw material concentration is 0.2 M. The as-prepared ZrO₂ filler (0, 3, 6, 9, and 12 wt.%) is spread through the enhanced polymer electrolyte P(S-MMA) (27 Wt.%)-LiClO₄ (8 wt.%)-EC + PC (1;1 of 65 wt.%) complex system via solution casting method. The as-synthesized electrolyte films are examined via complex impedance analysis. P(S-MMA) (27 wt.%)-LiCIO₄ (8 wt.%)-EC + PC (1 ;1 of 65 wt.%)-6 wt.% of ZrO₂ shows the high ionic conductivity 2.35 × 10<sup>-3</sup> Scm<sup>-1</sup>. Temperature-dependent ionic conductivity studies obey the non-linear behavior. The enhanced ZrO₂ has been expected to enhance the other electrochemical properties of the lithium secondary battery.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5707-5713"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the present work, pure nanocrystalline monoclinic Zirconia (ZrO₂) has been successfully synthesized and optimized by the modified co-precipitation method. The concentration of raw material has been optimized with the fixed amount of precipitation agent (Potassium hydroxide KOH). The thermal history of the precursor has been examined through TG/DTA analysis. All the samples are subjected to study the structure, fingerprints of the molecular vibrations, and morphology analyses. The representative sample has been analyzed through Transmission Electron Microscope (TEM) and X-ray Photo Electron Spectroscopy (XPS) analyses. The as-prepared sample exhibits the better crystallinity and surface morphology with lesser particle size (190 nm) when the raw material concentration is 0.2 M. The as-prepared ZrO₂ filler (0, 3, 6, 9, and 12 wt.%) is spread through the enhanced polymer electrolyte P(S-MMA) (27 Wt.%)-LiClO₄ (8 wt.%)-EC + PC (1;1 of 65 wt.%) complex system via solution casting method. The as-synthesized electrolyte films are examined via complex impedance analysis. P(S-MMA) (27 wt.%)-LiCIO₄ (8 wt.%)-EC + PC (1 ;1 of 65 wt.%)-6 wt.% of ZrO₂ shows the high ionic conductivity 2.35 × 10-3 Scm-1. Temperature-dependent ionic conductivity studies obey the non-linear behavior. The enhanced ZrO₂ has been expected to enhance the other electrochemical properties of the lithium secondary battery.

六水合硝酸氧锆(IV)浓度对修饰共沉淀法制备氧化锆(ZrO₂)纳米粒子的影响及分析
本文采用改进的共沉淀法成功合成了纯纳米晶单斜氧化锆(zro2)。采用一定量的沉淀剂(氢氧化钾KOH)对原料的浓度进行了优化。通过TG/DTA分析对前驱体的热历史进行了研究。所有样品都进行了结构、分子振动指纹图谱和形态分析。采用透射电镜(TEM)和x射线光电子能谱(XPS)对代表性样品进行了分析。当原料浓度为0.2 m时,制备的ZrO 2填料(0、3、6、9、12 wt.%)通过溶液浇铸法在增强的聚合物电解质P(S-MMA) (27 wt.%) -LiClO₄(8 wt.%)-EC + PC (65 wt.%的1∶1)复合体系中扩散。通过复阻抗分析对合成的电解质膜进行了表征。P(S-MMA) (27 wt.%)-LiCIO₄(8 wt.%)-EC + PC (65 wt.%)-6 wt.%的ZrO₂表现出较高的离子电导率2.35 × 10-3 cm-1。温度相关的离子电导率研究服从非线性行为。增强的ZrO₂有望提高锂二次电池的其他电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信