{"title":"A Facile Synthesis of Nido-Carborane Polymers via Dynamic Self-Assembly by Poly(carboxybetaine methacrylate).","authors":"Zhou Wang","doi":"10.1166/jnn.2021.19483","DOIUrl":null,"url":null,"abstract":"<p><p>Carborane are widely applied in boron neutron capture therapy (BNCT) field, but it is difficult to perform biocompatibility with cells due to its own water solubility differences, so how to solve the water solubility problem has always been the focus of research. A simple, inexpensive and effective method was used to study the synthesis of nido-carborane azaspirodecanium poly(carboxybetaine methacrylate) by one-pot cyclization of nido-carborane azaspirodecanium under the synergistic effect of inorganic bases and conventional organic solvents. Its characterization is mainly to use 1H-NMR nuclear magnetic resonance spectrum and infrared spectroscopy to determine the characteristic peak and range of borane. Through transmission electron microscope (TEM), it can be observed that the white nanoparticles, namely carborane, are completely contained by polymer ions, which not only increases the surface area but also the concentration of boron uptake in the cell is 100 times that of borono-phenylalanine (BPA). Based on the successful synthesis of N-CB5-4 and N-CB6-5 without harsh conditions, a feasibility point of view was put forward, namely, super water-soluble carborane polymer.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5681-5687"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carborane are widely applied in boron neutron capture therapy (BNCT) field, but it is difficult to perform biocompatibility with cells due to its own water solubility differences, so how to solve the water solubility problem has always been the focus of research. A simple, inexpensive and effective method was used to study the synthesis of nido-carborane azaspirodecanium poly(carboxybetaine methacrylate) by one-pot cyclization of nido-carborane azaspirodecanium under the synergistic effect of inorganic bases and conventional organic solvents. Its characterization is mainly to use 1H-NMR nuclear magnetic resonance spectrum and infrared spectroscopy to determine the characteristic peak and range of borane. Through transmission electron microscope (TEM), it can be observed that the white nanoparticles, namely carborane, are completely contained by polymer ions, which not only increases the surface area but also the concentration of boron uptake in the cell is 100 times that of borono-phenylalanine (BPA). Based on the successful synthesis of N-CB5-4 and N-CB6-5 without harsh conditions, a feasibility point of view was put forward, namely, super water-soluble carborane polymer.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.