{"title":"Three-Dimensional Cell Printed Lock-Key Structure for Oral Soft and Hard Tissue Regeneration.","authors":"Shihan Zhang, Qing Li, Peng Liu, Chunping Lin, Zhihui Tang, Hom-Lay Wang","doi":"10.1089/ten.TEA.2021.0022","DOIUrl":null,"url":null,"abstract":"Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (P<0.01), and slow degradation rate (P<0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80%±1.14, while BMSCs viability in AGH was 86.59%±0.75. PCR results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (P<0.01). After 8-week implantation into the dorsum of 6-8-week-old male BALB/c nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation.","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"13-26"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2021.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (P<0.01), and slow degradation rate (P<0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80%±1.14, while BMSCs viability in AGH was 86.59%±0.75. PCR results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (P<0.01). After 8-week implantation into the dorsum of 6-8-week-old male BALB/c nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation.