Toward a fine-scale population health monitoring system.

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2021-04-15 DOI:10.1016/j.cell.2021.03.034
Gillian M Belbin, Sinead Cullina, Stephane Wenric, Emily R Soper, Benjamin S Glicksberg, Denis Torre, Arden Moscati, Genevieve L Wojcik, Ruhollah Shemirani, Noam D Beckmann, Ariella Cohain, Elena P Sorokin, Danny S Park, Jose-Luis Ambite, Steve Ellis, Adam Auton, Erwin P Bottinger, Judy H Cho, Ruth J F Loos, Noura S Abul-Husn, Noah A Zaitlen, Christopher R Gignoux, Eimear E Kenny
{"title":"Toward a fine-scale population health monitoring system.","authors":"Gillian M Belbin, Sinead Cullina, Stephane Wenric, Emily R Soper, Benjamin S Glicksberg, Denis Torre, Arden Moscati, Genevieve L Wojcik, Ruhollah Shemirani, Noam D Beckmann, Ariella Cohain, Elena P Sorokin, Danny S Park, Jose-Luis Ambite, Steve Ellis, Adam Auton, Erwin P Bottinger, Judy H Cho, Ruth J F Loos, Noura S Abul-Husn, Noah A Zaitlen, Christopher R Gignoux, Eimear E Kenny","doi":"10.1016/j.cell.2021.03.034","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":null,"pages":null},"PeriodicalIF":45.5000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2021.03.034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.

建立精细的人口健康监测系统。
了解人群健康差异是公平精准健康工作的重要组成部分。流行病学研究通常依赖于种族和民族的定义,但这些人口标签可能无法充分捕捉影响特定亚人群的疾病负担和环境因素。在此,我们提出了一个框架,将电子健康记录(EHR)中的数据与基因组数据结合起来重新利用,以探索可能影响疾病负担的人口关系。利用来自纽约市一个多样化生物库的数据,我们确定了 17 个共享最近遗传祖先的社区。我们观察到 1,177 种与特定群体有统计学关联的健康结果,并证明了导致孟德尔疾病的基因变异的分离存在显著差异。我们还证明,精细的人群结构会影响群体内复杂疾病风险的预测。这项工作加强了将基因组数据与电子病历联系起来的效用,并为精细监测人口健康提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信